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Abstract: A multisignature scheme allows a group of signers to cooperate to generate a
compact signature on a common document. The length of the multisignature depends only on
the security parameters of the signature schemes and not on the number of signers involved.
The most e�cient multisignature scheme known in regards to key setup requirements is
constructed by Bellare and Neven at CCS'06 in the plain public-key model. In this paper,
we present two new e�cient multisignature schemes whose security is tightly related to
the Di�e-Hellman problems in the random oracle model. Like Bellare-Neven scheme, our
multisignature schemes are also proved secure against rogue-key attacks in the plain public
key model. Our construction derives from variants of EDL signatures.
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1 Introduction
A multisignature scheme enables multiple signers to jointly authenticate a document pro-
ducing a �xed length of digital signature. The goal of a multisignature is to prove that
each member of the stated group signed the message. It is up to a particular application to
decide which group is required to sign a message. A veri�er might reject a multisignature
not because it is invalid, but because the veri�er is not satis�ed with the group which
signed the message. Multisignatures can be applied to provide e�cient batch veri�cation
of several signatures of the same message under di�erent public keys, e.g. applications
concerning the multi-cast communication: IP Multi-cast, Peer-to-Peer �le sharing, mobile
ad hoc networks, etc.

The notion of multisignatures was �rst introduced by Itakura and Nakamura in [IN83],
and has been followed by many other research works [Oka88, Boy89]. Those initial schemes
were not very e�cient and in particular there was no formal notion of security. In fact, the
e�ective attacks on multisignature schemes have succeeded due to weaknesses related to
key setup protocol, in particular the ability to mount a rogue key attack. Such an attack
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can be realized whenever an adversary is allowed to choose his public key as he wishes.
Typically, the adversary chooses his public key as a function of public keys of honest user,
allowing him to produce forgeries easily.

The �rst formal security model for multisignatures was formalized by Micali et al. in
[MOR01]. Their scheme requires a dedicated key generation protocol amongst potential
signers for the purpose of counteracting rogue-key attacks. This means that the set of
potential signers must engage in an interactive key generation protocol, as a pre-processing
step, to provide to each a public and secret key. Those requirements are impractical. Then,
Boldyreva introduced a variant of their model by making use of the knowledge of secret key
(KOSK) assumption which requires expensive zero-knowledge (ZK) proofs of knowledge
(POKs) performed with the CA. It allows us to ensure that an user can only use its public
key which is corresponding its secret key. This assumption, however, is not realized by
existing public key infrastructure (PKI).

Plain public key model. In setting for multisignature schemes, the set of potential
users should be dynamic. Users can choose his public key as they wish and may register
keys at any time. In [BN06], Bellare and Neven discuss the drawbacks of multisignature
schemes in [MOR01, Bol04, LOS+06] in detail and show that it is possible to dispense
with both the dedicated key generation protocol [MOR01] and the KOSK assumption
[Bol04, LOS+06]. They presented a multisignature scheme which is provably secure against
rogue-key attacks in the plain public-key model, meaning that key registration with a
Certi�cation Authority (CA) requires nothing more than that each signer has a (certi�ed)
public key. Their model allows users to register keys at any time, concurrently with other
users.

Tight reduction. As Micali and Reyzin [MR02] put it, if the reduction is e�cient
and hence the relative hardness of forging and that of breaking the underlying computa-
tional assumption is close, we call the reduction tight. If the reduction is less e�cient,
we call it close, and if it is signi�cantly less e�cient, we call it loose. Intuitively, a tight
reduction means that the underlying cryptographic problem is almost as hard to solve
as the scheme to break. Up to date, there is no discrete-logarithm-based multisignature
scheme proposed with tight security reduction. The security proof of such a multisigna-
ture scheme [MOR01] is based on the �forking lemma� technique of Pointcheval and Stern
[PS96] or the variant of forking lemma [BN06]. The disadvantage of this technique is that
the so-obtained security reductions are loose.

Our contribution. We approach the problem of multisignatures with the goal of cre-
ating e�cient multisignature schemes with tight security reduction under Di�e-Hellman
assumptions in the random oracle model [BR93]. In this paper, we propose two multisigna-
ture schemes: the security of our �rst scheme relies on the hardness of the computational
Di�e-Hellman (CDH) problem; the security of second scheme is based on the hardness of
the decisional Di�e-Hellman (DDH) problem. Our multisignature schemes are provably
secure, even against rogue-key attacks, in the plain public-key setting. Our constructions
are based on variants of the EDL signature scheme presented in [KW03][CM05]. Basi-
cally, our schemes are interactive, i.e. we require interactions among cosigners during
multisignature generation process.

Related works. The EDL signature scheme was independently presented by Chaum
and Pedersen in [CP92] and Jakobsson and Schnorr in [JS99]. However, the �rst tight secu-
rity reduction for this scheme was only showed by Goh and Jarecki in [GJ03]. The scheme
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was then improved by Katz-Wang [KW03] and Chevallier-Mames [CM05] for shorter sig-
natures. To date, they are the only signatures whose security is tightly related to the
Di�e-Hellman problems in the random oracle. The technique to obtain a tight security
reduction in their schemes is make use of a zero-knowledge proof of equality of discrete
logarithms [CEG87].

Bellare-Neven scheme [BN06], based on the Schnorr signatures [Sch91], is the �rst
multisignature scheme provably secure against rogue-key attacks in the plain public key
model. Their scheme is more e�cient than those in [MOR01][Bol04][LOS+06] in terms
of key registration with a CA. However, the security reduction for their scheme (in the
random oracle model), relies on the general forking lemma [BN06], is loose.

The shortest multisignatures which consist in only one group element were presented by
Boldyreva in [Bol04]. Moreover, her multisignature scheme is non-interactive. However,
this scheme is loosely related to the CDH problem. Besides, as pointed out above, its
security model makes use of the KOSK assumption and it thus is impractical. Even
through, there is also a multisignature scheme of Lu et al. [LOS+06] whose security is
proved in the standard model. However, also as Boldyreva scheme, their scheme also
makes use of KOKS assumption. Besides, the size of the system parameters in the scheme
[LOS+06] is very large, namely 160 group elements.

Organization. The rest of the paper is organized as follows. Section 2 provides
some preliminaries about bilinear maps, Di�e-Hellman problems and the security model
for multisignatures. In Section 3, we present our construction based CDH problem and
we analyze its security in Section 4. We present our multisignature scheme based DDH
problem in Section 5. Finally, we conclude the paper in Section 6.

2 Preliminary
2.1 Bilinear Map
Our �rst multisignature scheme uses a bilinear map, which is often called a pairing, to
implement a decision procedure for the Di�e-Hellman problem. Typically, the pairing
used is a modi�ed Weil or Tate pairing. In this section, we brie�y review the necessary
facts about bilinear maps.

Let G, GT be cyclic groups of prime order p. A map e : G × G → GT is called an
admissible pairing if it satis�es the following properties:

1. bilinearity: for all g1, g2 ∈ G and a, b ∈ Z, e(ga
1 , gb

2) = e(g1, g2)ab;

2. non-degeneracy: if g is a generator of G, then e(g, g) is a generator of GT ;

3. computable: there exists an e�cient algorithm to compute e(g1, g2) for ∀g1, g2 ∈ G.
see [JN03] for a more detailed discussion about bilinear maps and bilinear groups.

2.2 Computational Assumptions
The security of our schemes is based on the hardness of the Di�e-Hellman problems. Let
G be a cyclic group of prime order p and let g be a generator of G.

Computational Diffie-Hellman. Informally, the CDH problem is to �nd gab, given
(ga, gb) ∈ G as inputs, where a, b

$← Z∗p. An algorithm A has an advantage ε in solving
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the CDH problem in G if

Pr
[
A(g, ga, gb) = gab : g

R← G ; a, b
R← Z∗p

]

is at least ε. We say that the CDH problem is (t, ε)−hard in G if there exists no algorithm
A which running in time at most t have advantage ε in solving the CDH problem in G.

Decisional Diffie-Hellman. The DDH problem is informally to distinguish be-
tween tuples of the form (ga, gb, gab) (called DDH triples or DDH tuples), where
a, b

R← Z∗p and tuples of the form (ga, gb, gc), where a, b, c
R← Z∗p.

A distinguishing algorithm A has an advantage ε in solving the DDH problem in G if
∣∣∣Pr

[A(ga, gb, gab) = 1
]− Pr

[A(ga, gb, gc) = 1
]

: a, b, c
R← Z∗p

∣∣∣

is at least ε. We say that the DDH problem is (t, ε) − hard in G if there exists no
distinguishing algorithm A which running in time at most t have advantage ε in solving
the DDH problem in G.

2.3 Security Model for Multisignatures
The notion of security for an interactive multisignature scheme in the plain public key
model is introduced by Bellare and Neven in [BN06]. We consider the following game
associated to a multisignature scheme, which consists of four algorithms Setup, Keygen,
Multsign, Vf, and an adversary A:

- Setup: Adversary A is given the system parameters params which are obtained by
running the Setup algorithm, params

R← Setup and a target public key pk∗.

- Attack: Adversary A requests a multisignature, under the challenge key pk∗, on
a message m and a multiset Pk = {pk1, . . . , pkn} of purported cosigners L, where
pk∗ occurs in Pk at least once. A may either choose these public keys arbitrarily or
as a function of pk∗. In interacting with the honest signer, A will play the role of
rest signers in L and fully controls all messages exchanged in the network. Further,
the forger can also schedule an arbitrary number of protocol instances concurrently,
interacting with �clones� of the honest signer, where each clone maintains its own
state and uses its own coins but all use the keys pk∗, sk∗ and follow the protocol to
compute their responses to received messages. For some (Pk,m), A receives either
⊥ or a multisignature signature σ from the honest signer in response.

- Forgery: Eventually, after a polynomial number of queries, A outputs a forged
multisignature σ∗ on the input message m∗ given by signers in L. A is said to
win the game if Vf(m∗, L, σ∗) = 1, pk∗ is in the multiset Pk = {pk1, . . . , pkn} of
purported cosigners L and A has never requested to execute the signing query on
m∗ with L.

We de�ne MS Adv(A) to be the probability that the adversary A wins in the above game,
taken over the coin tosses made by A and the challenger.
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De�nition 2.1 An adversary A (t, qS , qH , N, ε)-breaks multisignature scheme in the ran-
dom oracle model if A runs in time at most t, A makes at most qS signing queries with
the honest signer, at most qH random oracle queries, the number of signers in L involved
in any signing query or in the forgery is at most N , and MS Adv(A) is at least ε. A
multisignature scheme is said to be (t, qS , qH , N, ε)-secure in the random oracle model if
no forger (t, qS , qH , N, ε)-breaks it.

We stress that this security model is only for interactive multisignature schemes. In
non-interactive multisignature schemes, there is no interaction between signers during mul-
tisignature generation process, an adversary is thus required that he has never requested
to execute the signing query on m∗ from the honest user.

3 A Multisignature Scheme Based on the CDH Problem
3.1 The Chevallier-Mames Signature Scheme
In order to give some intuition into our scheme, we brie�y recall the variant of EDL
signature scheme presented in [CM05]. Let G be a cyclic group of prime order p, g be a
generator of G and let H,G be two collision-resistant hash functions. To sign a message
m, a signer U , having secret and public keys pair (x, y), does as follows:

• chooses k ∈ Zp at random;

• computes u = gk, h = H(u), z = hx and v = hk;

• queries c = G(m, g, h, y, z, u, v) and computes s = k + cx;

• outputs σ = (z, s, c) ∈ G× Z2
p as the signature of m.

To verify a signature σ = (z, s, c) for m, one computes u′ = gsy−c, h′ = H(u′) and
v′ = h′sz−c. The signature σ is accepted i� c = G(m, g, h′, y, z, u′, v′).

The Chevallier-Mames signature scheme [CM05] is the most e�cient in variants of EDL
scheme [CP92, JS99, GJ03, KW03] under CDH assumption. For our goal of creating a
new multisignature scheme, the Chevallier-Mames signatures �rst may be slightly modi�ed
as follows: let a signature of a message m under public key y ∈ G be a quadruplet
(u, v, z, s) ∈ G3 × Zp such that gs = uyc and hs = vzc, where h = H(u) and c =
G(m, g, h, y, z, u, v). In order to aggregate individual signatures of a common message m,
(ui, vi, zi, si), for 1 ≤ i ≤ n under public keys PK = {y1, y2, · · · , yn}, we may be let
a multisignature be a tuple (u, v, s, {zi}n

i=1) such that: gs = u · ∏n
i=1 yci

i and hs =
v · ∏n

i=1 zci
i , where u =

∏n
i=1 ui, v =

∏n
i=1 vi and s =

∑n
i=1 si. Because a value ci

is di�erent in the exponent of each zi contributed by each signer, we cannot aggregate
individual shares zi. The size of the multisignature thereby grows linearly with the number
of signers. To solve this problem, we propose to use a pairing (bilinear map) whose cost
is equivalent �ve exponential operations [BKLS02]. A multisignature may be a triple
(u, z, s) ∈ G2×Zp such that: gs = u·∏n

i=1 yci
i and e(z, g) = e(h,

∏n
i=1 yi), where h = H(u),

ci = G(yi, L, u, m, g, h). The values of u, z (and s) are typically computed as the product
(the sum resp.) of individual shares of ui, zi (of si resp.) contributed by each signer.
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3.2 Our Multisignature Scheme
In describing the scheme, we assume the signers directly send and receive messages to each
other over a point-to-point network. Like in [BN06], to avoid using the rewinding tech-
nique in security proof, our scheme requires an additional communication round between
signers, in which each signer �rst makes an additional random oracle query on its indi-
vidual share u and then sends this challenge to every other signer before sending u. This
prevents the forger to know the value of individual share u before the simulator does. The
simulator thereby could imitate the oracle so as to produce commitments and challenges
simultaneously.

Let G,GT be cyclic groups of prime order p in which G provides admissible parings, let
k be a security parameter. Three cryptographic hash functions: H0 : G → {0, 1}l0 ,H1 :
G → G and G : {0, 1}∗ → Zp. We remark that H0, H1 and G will be viewed as random
oracles in our security proof. The multisignature scheme MS = Setup, Keygen, Multsign,Vf
works as follows:

Parameter generation (Setup): A trusted center generates a random generator g ∈ G∗
and publishes params = (G,GT , e, g,H0,H1,G) as system wide parameters.

Key generation (Keygen): On input 1k, each signer picks a random number x
R← Zp as

his private key. The corresponding public key is y = gx.

Signing (Multsign): Suppose that L = {P1, P2, . . . , Pn} is a group of n signers that wish
to sign a common message m, each having as input its own public and secret key as
well as a multiset of public keys Pk = {y1, y2, . . . , yn} of the other signers. We also
stress that the signers P1, . . . , Pn are merely local references to co-signers, de�ned by
one signer within one protocol instance. The signing process, which is interactive,
consists of four rounds:

Round 1. Each signer Pi ∈ L:
- picks a random number ri ∈ Zp;
- computes its individual commitment ui = gri ;
- queries H0 to compute the challenge hi = H0(ui);
- sends hi to every other signer.

Round 2. Each signer Pi ∈ L:
- receives hj from signer j, for 1 ≤ j ≤ n, j 6= i;
- sends ui to signer j.

Round 3. Each signer Pi ∈ L:
- receives uj from signer j, for 1 ≤ j ≤ n, j 6= i;
- checks whether hj = H0(uj) for all 1 ≤ j ≤ n, j 6= i. If not, abort the
protocol. Otherwise,

- computes u =
∏n

i=1 ui, h = H1(u) and zi = hxi .
- queries ci = G(yi, u, Pk, m, g, h) and computes si = ri + xici mod p.
- sends to signer j: zi, si, for 1 ≤ j ≤ n, j 6= i.
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Round 4. Each signer Pi ∈ L:
- receives zj , sj from signer j, for 1 ≤ j ≤ n, j 6= i;
- computes z =

∏n
i=1 zi, s =

∑n
i=1 si mod p;

- outputs the signature σ = (u, z, s);

Veri�cation (Vf): To verify a signature σ of a message m of a group L, whose public
keys is multiset Pk = {y1, . . . , yn}, one does as follows:

- Compute h = H1(u) and ci = G(yi, u, Pk, m, g, h) for all 1 ≤ i ≤ n;
- Check whether:

gs = u ·
n∏

i=1

yci
i and e(z, g) = e(h,

n∏

i=1

yi).

3.3 E�ciency
Our multisignatures consists of three elements (two elements in G and one element in
Zp). In above description, we use a �symmetric� pairing which is found on supersingular
curves, a very limited class of curves. In practice, the bit-length of representation in G
is about 300 bits. Thus, the size of our signatures is 760 bits to provide the 1024-bit
RSA level of security [GPS06]. However, our scheme can easily be generalized to work
with an �asymmetric� pairing of the form e : G1 × G2 → GT , allowing the use of wider
classes of elliptic curves [GPS06]. This allows us to take advantage of certain families of
algebraic curves in order to obtain the shortest possible signatures. Speci�cally, elements
of G1 have a short representation over the ground �eld Fp whereas elements of G2, which
may be de�ned over an extension �eld Fpα , have a longer representation than those of G1.
The group element representation sizes in G1,G2 and GT are 160 bits, 6 · 160 bits and
6 · 160, respectively [GPS06]. Thus, the size of our signatures is 480 bits. On the other
hand, public keys of signers belong the group G2, and we will need an e�cient computable
isomorphism ψ : G2 7→ G1 to map public keys yi to elements in G1 [SV07] for the purpose
of checking the �rst veri�cation equality. The size of public key yi of each signer thus
increases to 6 · 160 bits.

4 Security Analysis
In this section, we reduce the security of the proposed multisignature scheme to the CDH
problem in the group G with bilinear map e. The main technique used to obtain a tight
proof of security is make use of proving equality of discrete logarithms (see [GJKW07]
for a discussion more details). Let N be the maximum number of signers which partic-
ipate signing in one protocol instance, the following theorem implies that the proposed
multisignature scheme is secure if the CDH assumption is hold in G.

Theorem 4.1 The proposed multisignature scheme is (t, qH , qS , N, ε)-unforgeable if the
CDH problem is (t′, ε′)-unforgeable in G, where

ε′ ≥ ε− (qH + NqS + 1)2

2l0
+

qS(2qH + 3NqS)
2k
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and
t′ ≤ t + 6qStexp + O((qS + qH)(1 + qH + NqS)),

where texp is the time of an exponentiation in G.

Proof We are given a group G and a CDH challenge (g, gx, ga). Let A be a polynomial
time forger that (t, qH , qS , ε)-breaks the proposed scheme. We need to construct an algo-
rithm B which, by interacting with the adversary A, (t′, ε′)-breaks this challenge, i.e. to
�nd gax. The forger A, after qH hash queries to random oracles (H0, H1 and G) and qS

signature queries, is able to produce a multisignature forgery with probability ε within
time t.

Assume that A is trying to attack the honest signer P ∗. B runs the forger A on input
system parameters and target public key y∗ = gx. Algorithm B initializes three list H, U
and G to simulate random oracles H0,H1,G, respectively. Like [BN06], we also make use
of a list T which assigns a unique index 1 ≤ i ≤ qH + NqS to each public key y occurring
either as a cosigner's public key in one of A's signature queries, or as the �rst item in
the argument of one of A's queries to G. Algorithm B uses a counter ctr indicating the
current index of this list, initially set to zero. B assigns T[y∗] ← 0. It responds to A's
oracle queries, essentially, at random as follows:

Queries to H0. In response to a query H0(ui), B �rst checks if the output of H0 on this
input has been previously de�ned. If so, B returns the previously assigned value.
Otherwise, B returns with a value chosen uniformly at random from {0, 1}l0 . All
queries ui are stored in the list H.

Queries to H1. In response to a query of the forger A to H1(u), algorithm B generates
a random number d ∈ Zp, and returns (ga)gd. All queries u are stored in the list U.

Queries to G. In response to a query G, we �rst parse the argument of the query into
two portion as Y, Q. If T[Y ] is unde�ned then B increases ctr and sets T[Y ] ← ctr.
If G[ctr,Q] is unde�ned, then B assigns G[i, Q], for all 1 ≤ i ≤ qH + NqS with
random numbers, and picks in advance at random as e1, . . . , eqH+qS ∈ Zp to assign
for G[0, Q].

Signing query on m with group of users L: Signature queries to the honest signer
P ∗ consists of three rounds. First, the adversary provides m, L to P ∗ and receives
the individual challenge h∗ from P ∗ in response. Second, playing the role of rest
signer, the adversary A provides the challenges hi to P ∗ and receives u∗ from P ∗ in
response. Third, the adversary provides the commitments ui to P ∗ and receives z∗, s∗

from P ∗ in response. Note that, in the simulation, it is not the adversary providing
the joint commitment u to simulator, we do not thus need to use rewinding. In
detail, answering signature queries works as follows:
First, B checks whether P ∗ /∈ L, if so algorithm B returns ⊥ to A. If not, it parses the
public keys of signers in L as Pk = {y1 = y∗, y2, . . . , yn}. Then, B checks whether
T[yi], for i ∈ {2, . . . , n}, has already been de�ned. If not, it increases ctr and sets
T[yi] ← ctr. Then, B sets c1 at random as e1, . . . , eqH+qS in advance. B generates
(γ, s1) ∈ Z2

p at random, computes u1 = gs1y−c1 . It sets h1 = H0(u1) and sends to
all signers.
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After receiving h2, · · · , hn from the adversary A, B looks up in the list H for values
uj such that hi = H0(uj). If multiple such values are found for some i, the algorithm
B stops (Event 1). If no such value was found for some i then it sets alert ← true
and sends u1 to all cosigners; otherwise, B computes u =

∏n
i=1 ui. IfH1(u) is already

set, algorithm B fails and stops (Event 2). Else, algorithm B sets h = H1(u) = gγ

and computes z1 = yγ
1 = (gx)γ = hx, remark that DLg(y) = DLh(z)(= x). Then, B

checks whether G[0, Q] has already been de�ned for Q = 〈u, Pk,m, g, h〉. If so, it fails
and stops (Event 3). If not, it sets G(y1, u, Pk, m, g, h) = G[0, Q] = c1, randomly
chooses G[i, Q] R← Zp for all 1 ≤ i ≤ qH + NqS and sends u1 to all cosigners.
After receiving u2, . . . , un from A, B veri�es that hi = H0(ui) for all 1 ≤ i ≤ n. If
not, it returns ⊥ to A. If alert = true, B fails and stops (Event 4). Else, it sends
(z1, s1) to all cosigners.
After receiving (z2, s2), · · · , (zn, sn) from cosigners (A), B computes z =

∏n
i=1 zi and

s =
∑n

i=1 si and returns the valid signature (u, z, s).

As we can see, this simulator is valid, except for some events:

• Event 1: In this case, there exists two values ui 6= u′i such that hi = H0(ui) =
H0(u′i) for some i, i.e, there is at least one collision occurred in H0. As outputs
of H0 are chosen at random from {0, 1}l0 and since there are at most qH0 + NqS

queries to H0, the probability that at least one collision occurs is upper bounded by
((qH0 + NqS)(qH0 + NqS + 1)/2)/2l0 ≤ (qH0 + NqS + 1)2/2l0+1.

• Event 2: As u is a random element in G, the probability that the H1(u) is already
set is less than (qH1 +NqS)/p , for one signature query. For qS signature queries, the
failure probability is thus upper bounded by qS(qH1 +NqS)/p ≤ qS(qH1 +NqS)/2k.

• Event 3: The algorithm B only aborts at event 3 if it has run into an input string
〈0, u, Pk, m, g, h〉 on which G has been already queried. We distinguish between
the case that H0(u1) was previously queried by the forger, and the case that it
was not. In the �rst case, A probably knows u and may have deliberately queried
G(y, u, Pk,m, g, h) for some y. But since u1 was chosen by B independently from A's
view at the beginning of the signing protocol, the probability that A queried H0(u1)
is at most (qH0 + NqS)/p, for one signature query. In the second case, A's view is
completely independent of u1, and hence of u. The probability that u occurred by
chance in a previous query to G or was set by B in one of the i−1 previous signature
simulations is at most (qH0 +qS)/p, for one signature query. For qS signature queries,
the failure probability is thus upper bounded by qS((qH0 + NqS) + (qH0 + qS))/p ≤
2qS(qH0 + NqS)/2k.

• Event 4: In this case, A must have predicted the value of H0(ui) for at least one
1 ≤ i ≤ n, which it can do with probability at most N/2l0 , for one signature query.
For qS signature queries, the failure probability is thus upper bounded by qSN/2l0 .

As a conclusion, except with a failure probability:

εstop =
(qH0 + NqS + 1)2

2l0+1
+

qS(qH1 + NqS)
2k

+
2qS(qH0 + NqS)

2k
+

qSN

2l0
,
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the simulation is successful.
Eventually, A halts and outputs an attempted forgery σ = (û, ẑ, ŝ) on some message

m̂ along with L = {P ∗, P2, · · · , Pn}. It must not previously have requested a signature on
m̂ with L. In addition, it outputs the private keys (x2, · · · , xn) for all secret keys except
the key x of the challenge P ∗. Algorithm B �rst computes additional random oracle
queries G1(yi, û, Pk, m̂, g, ĥ) for 1 ≤ i ≤ n, thereby making sure that G[yi] is de�ned. Let
ĥ = H1(û), B computes ẑ1 = ẑ/

∏n
i=2 ĥxi . If A's forgery is valid, the simulator returns

(û, ẑ, ŝ, ĥ, ẑ1).
We argue that, with all but negligible probability, ẑ1 = ĥx; if so, say ẑ1 is good. Indeed,

if ẑ1 is not good then for any A,B there is at most one possible value of c for which there
exists an s satisfying A = gsyc and B = ĥsẑc

1 (lemma 1 in [GJKW07]). If ẑ1 is not
good, then, for any hash query G(y1, û, Pk, m̂, g, ĥ) made by B the probability that the
query returns a c for which there exists an s as above is at most 1/2k. It follows that the
probability that B outputs a valid forgery where ẑ1 is not good is at most qG/2k. The
probability that B outputs a valid forgery such that ẑ1 is good at least ε− εstop − qG/2k.
In that case, the CDH challenge is solved as follows:

ẑ1/yd
1 = ĥx1/yd

1 = (gagd)x/(gx)d = gax,

as desired.
Summing the probabilities, we can that the algorithm B solve the CDH problem with

probability:
ε′ ≥ ε− εstop − (qG + 1)/2k

≥ ε− (qH0 + NqS + 1)2

2l0+1
− qS(qH1 + NqS)

2k
− 2qS(qH0 + NqS)

2k
− qSN

2l0
− qG

2k

≥ ε− (qH + NqS + 1)2

2l0
− qS(2qH + 3NqS)

2k

and the running time t′ satis�es
t′ ≤ t + 6qStexp + O((qS + qH)(1 + qH + NqS)),

where qH = qH0 + qH1 + qG , texp is the time of an exponentiation in G.

5 A Multisignature Scheme Based on the DDH Problem
In the previous scheme, our scheme makes use of groups with bilinear maps. In this section,
we present a more e�cient multisignature scheme which relies on decisional Di�e-Hellman
problem, stronger than CDH assumption, in group completely arbitrary. Our construction
is based on Katz-Wang signature scheme [KW03] that works as follows:

Let G be a cyclic group of prime order p, g be a generator of G, h ∈ G chosen randomly
and let H : {0, 1}∗ → {0, 1}l0 be a hash function. A Katz-Wang signature of a message m
under public keys (y1, y2) is a triplet (A, B, s), such that gs = Ayc

1 and hs = Byc
2, where

A = gr, B = hr and c = H(A,B, m).
Note that the Katz-Wang signature [KW03] consists of only two elements (c, s), we

however modi�ed slightly their scheme for easy extending to multisignatures. The idea
of using the Katz-Wang signatures for constructing multisignatures was also reminded by
Bellare and Neven in section 6 of [BN06] as further results.
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5.1 Our Multisignature Scheme
As before, we assume that G,GT be cyclic groups of prime order p, k be a security
parameter. Two cryptographic hash functions: H : G → {0, 1}l0 and G : {0, 1}∗ → Zp.
Our second scheme is de�ned as follows:

Parameter generation. A trusted center chooses a generator g ∈ G∗ and h ∈ G at
random. It then publishes params = (G, e, g, h,H,G) as system wide parameters.

Key generation. On input 1k, each signer picks a random number x
R← Zp as his private

key. The corresponding public keys are PK = (y1, y2)(= (gx, hx)).

Signing (Multsign): Suppose that L = {P1, P2, . . . , Pn} is a group of n signers that wish
to sign a common message m, each having as input its own public and secret key as
well as a multiset of public keys Pk = {PK1, . . . , PKn} of the other signers. We also
stress that the signers P1, . . . , Pn are merely local references to co-signers, de�ned by
one signer within one protocol instance. The signing process, which is interactive,
consists of four rounds, where in each round signers send (and receive) a message to
(from resp.) each other signer.

Round 1. Each signer Pi ∈ L:
- picks a random number ri ∈ Zp;
- computes its individual commitments ui = gri and vi = hri , then queries
H to compute challenges hi = H(ui) and ti = H(vi);

- sends hi, ti to every other signer.
Round 2. Each signer Pi ∈ L:

- receives hj , tj from signer j, for 1 ≤ j ≤ n, j 6= i;
- sends ui, vi to signer j.

Round 3. Each signer Pi ∈ L:
- receives uj , vj from signer j, for 1 ≤ j ≤ n, j 6= i;
- checks whether hj = H(uj) and tj = H(vj) for all 1 ≤ j ≤ n, j 6= i. If not,
abort the protocol. Otherwise, computes u =

∏n
i=1 ui and v =

∏n
i=1 vi.

- queries ci = G(PKi, u, v, Pk, m, g, h) and computes si = ri + xici mod p.
- sends to signer j: si.

Round 4. Each signer Pi ∈ L:
- receives sj from signer j;
- computes s =

∑n
i=1 si mod p;

- outputs the signature σ = (u, v, s);

Veri�cation. Given the valid signature σ, list of group of users L and message m, the
veri�er computes ci = G(PKi, u, v, Pk,m, g, h) for all 1 ≤ i ≤ n and tests whether:

gs = u ·
n∏

i=1

yci
1i and hs = v ·

n∏

i=1

yci
2i.
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5.2 E�ciency
Our second scheme is more e�cient than the �rst one. It does not make use of GDH
groups. Thus, results obtained are more general and the length of signatures is shorter.
As compared to Bellare-Neven multisignatures [BN06], our multisignature has more than
one element. On the other hand, the security reduction of our second scheme is tight
under DDH assumption.

5.3 Security
Theorem 5.1 The proposed multisignature scheme is (t, qH , qS , N, ε)-unforgeable if the
DDH problem is (t′, ε′)-unforgeable in G, where

ε′ ≥ ε− (qH + NqS + 1)2

2l0
− qS(2qH + 3NqS) + 1

2k
and t′ ≤ t + O(qStexp).

Proof Assume we have a polynomial time forger that runs in time at most t, makes at
most qH hash queries and at most qS signature queries and outputs a valid multisignature
with probability at least ε. We need to construct an algorithm B which, by interacting
with the forger A, solves DDH problem with probability ε′ within time t′.

Algorithm B given as input a group G and a tuple (g, h, y1, y2), informally, is to deter-
mine whether this is a random tuple or a Di�e-Hellman tuple (cf. Section 2.2). Assume
that A is trying to attack the honest signer P ∗ who have the public keys PK∗ = (y1, y2).
B sets PK = (y1, y2) and runs A on input PK∗. Algorithm B simulates the signing and
hash oracle for A as follows:

First, B initializes two list H, G to simulate random oracles H,G, respectively. A list
T assigns a unique index 1 ≤ i ≤ qH + NqS to each public key PK occurring either as a
cosigner's public key in one of A's signature queries, or as the �rst item in the argument
of one of A's queries to G. B uses a counter ctr indicating the current index of this list,
initially set to 0 and assigns T[PK∗] ← 0. It responds to A's queries at random as follows:

Queries to H. In response to a query H(ui) or H(vi), B �rst checks if the output of H
on this input has been previously de�ned. If so, B returns the previously assigned
value. Otherwise, B returns with a value chosen uniformly at random from {0, 1}l0 .
All queries ui, vi are stored in the list H.

Queries to G. In response to a query G, we �rst parse the argument of the query into two
portion as PK, Q. If T[PK] is unde�ned then B increases ctr and sets T[PK] ← ctr.
If G[ctr,Q] is unde�ned, then B assigns G[i, Q], for all 1 ≤ i ≤ qH +NqS with random
numbers, and picks in advance at random as e1, . . . , eqH+qS ∈ Zp to assign for G[0, Q].

Signing query on m with group of users L: First, B checks whether P ∗ /∈ L, if so
algorithm B returns ⊥ to A. If not, it parses the public keys of signers in L as Pk =
{PK1 = PK∗, PK2, . . . , PKn}. Then, B checks whether T[PKi], for i ∈ {2, . . . , n},
has already been de�ned. If not, it increases ctr and sets T[PKi] ← ctr. Then, B
sets c1 at random as e1, . . . , eqH+qS

in advance. B generates (γ, s1) ∈ Z2
p at random,

computes u1 = gs1y−c1
1 and v1 = hs1y−c1

2 . It sets h1 = H(u1), v1 = H(v1) and sends
to all signers.
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After receiving h2, · · · , hn and t2, · · · , tn from the adversary A, B looks up in the
list H for values uj , vj such that hi = H(uj) and ti = H(vj). If multiple such values
are found for some i, the algorithm B stops (Event 1). If no such value was found
for some i then it sets alert ← true and sends u1, v1 to all cosigners; otherwise, B
computes u =

∏n
i=1 ui and v =

∏n
i=1 vi. Then, B checks whether G[0, Q] has already

been de�ned for Q = 〈u, v, Pk, m, g, h〉. If so, it fails and stops (Event 2). If not, it
sets G(PK1, u, v, Pk, m, g, h) = G[0, Q] = c1, randomly chooses G[i, Q] R← Zp for all
1 ≤ i ≤ qH + NqS and sends u1, v1 to all cosigners.
After receiving u2, v2, . . . , un, vn from A, B veri�es that hi = H(ui) and ti = H(vi)
for all 1 ≤ i ≤ n. If not, it returns ⊥ to A. If alert = true, B fails and stops (Event
3). Else, it sends s1 to all cosigners.
After receiving s2, · · · , sn from cosigners (A), B computes s =

∑n
i=1 si and returns

the valid signature (u, v, s).

As we can see, this simulator is valid, except for some events:

• Event 1: In this case, there exists two values ui 6= u′i or vi 6= v′i such that hi =
H(ui) = H(u′i) or ti = H(vi) = H(v′i) for some i, i.e, there is at least one collision
occurred in H. As outputs of H are chosen at random from {0, 1}l0 and since there
are at most qH+NqS queries to H, the probability that at least one collision occurs
is upper bounded by ((qH + NqS)(qH + NqS + 1)/2)/2l0 ≤ (qH + NqS + 1)2/2l0+1.

• Event 2: The algorithm B only aborts at event 2 if it has run into an input string
〈0, u, v, Pk,m, g, h〉 on which G has been already queried. We distinguish between the
case that H(u1) and H(v1) were previously queried by the forger, and the case that
they were not. In the �rst case, A probably knows u, v and may have deliberately
queried G(PK, u, v, Pk,m, g, h) for some PK. But since u1, v1 was chosen by B
independently from A's view at the beginning of the signing protocol, the probability
that A queried H(u1) and H(v1) is at most (qH+NqS)/p, for one signature query. In
the second case, A's view is completely independent of u1 and v1, and hence of u and
v. The probability that u and v occurred by chance in a previous query to G or was
set by B in one of the i−1 previous signature simulations is at most (qH+qS)/p, for
one signature query. For qS signature queries, the failure probability is thus upper
bounded by qS((qH + NqS) + (qH + qS))/p ≤ 2qS(qH + NqS)/2k.

• Event 3: A must have predicted the value of H(ui), H(vi) for at least one 1 ≤ i ≤ n,
which it can do with probability at most N/2l0 , for one signature query. For qS

signature queries, the failure probability is thus upper bounded by qSN/2l0 .

As a conclusion, except with a failure probability:

εstop =
(qH + NqS + 1)2

2l0+1
+

2qS(qH + NqS)
2k

+
qSN

2l0
≤ (qH + NqS + 1)2

2l0
+

2qS(qH + NqS)
2k

,

the simulation is successful.
Eventually, A halts and outputs an attempted forgery σ = (û, v̂, ŝ) on some message m̂

along with L = {P ∗, P2, · · · , Pn}. It must not previously have requested a signature on m̂
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with L. In addition, it outputs the private keys (x2, · · · , xn) for all secret keys except the
key x of the challenge P ∗. Algorithm B �rst computes additional random oracle queries
G1(PKi, û, v̂, Pk, m̂, g, h) for 1 ≤ i ≤ n, thereby making sure that G[PKi] is de�ned. If
A's forgery is valid, i.e. g, h, y1, y2 is a Di�e-Hellman tuple, the simulator outputs 1 with
the probability ε− εstop; otherwise it outputs 0.

On the other hand, if (g, h, y1, y2) is a random tuple, then it is not a Di�e-Hellman tuple
with probability 1− 1/p. In this case, for any u, v and any query G(PK1, u, v, Pk,m, g, h)
made by A then there is at most one possible value of c for which there exists an s satisfying
u = gsyc

1 and v = hsyc
2 (lemma 1 in [GJKW07]). Thus, A outputs a forgery (and hence

B outputs 1) with probability at most 1/p + qG/2k ≤ (qG + 1)/2k. (As in the previous
proof, the additive factor of 1 occurs in case A did not make the relevant query to G for
its forgery.)

Summing the probabilities, we see that:

|Pr [B(g, gx, gy, gxy) = 1]− Pr [B(g, gx, gy, gz) = 1]| ≥ ε− εstop − (qG + 1)/2k

≥ ε− (qH + NqS + 1)2/2l0 − 2qS(qH + NqS)/2k − (qG + 1)/2k

≥ ε− (qH + NqS + 1)2/2l0 − (qS(2qH + 3NqS) + 1)/2k

and the running time t′ satis�es t′ ≤ t + O(qStexp), where texp is the time of an expo-
nentiation in G.

6 Conclusion
At CCS'06, Bellare and Neven introduced the �rst secure multisignature scheme in the
plain public key model. In this paper, we presented two multisignature schemes provably
secure in the random oracle model. We proved the security of our schemes by reducing it
to Di�e-Hellman problems with tight security reductions. Further, our schemes are secure
against rogue-key attacks in the plain public key model.
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