
1

Signtiming Scheme
based on Aggregate Signatures

Duc-Phong Le, Alexis Bonnecaze, and Alban Gabillon

Abstract—The aim of timestamping systems is to provide a
proof-of-existence of a digital document at a given time. By
timestamping a digital document after it has been signed by
concerned parties, we know when the document was signed.
Timestamping services also provide the non-repudiation and long
term properties for digital signatures. Combining both digital
signature and provable timestamping guarantees authentication,
integrity and non-repudiation of digital documents. In this paper,
we introduce such a service, so called signtiming, that signs and
timestamps in a single step. Our scheme is based on an ID-based
aggregate signature and is secure in the random oracle model.

Index Terms—Timestamping Scheme, Digital Signature, Ag-
gregate Signature, Identity-based Signature, Pairing

I. INTRODUCTION

Digital signatures are used to provide authentication of
digital documents. They have been developed for different
applications such as secure and legally binding information
exchange. In many applications like E-voting, E-commerce or
E-administration, signature must be completed by a provable
dating of the document. In the context of E-voting, it is indeed
important for a voter to be able to prove that she or he voted
before the end of the session. Digital contracts should also
be associated a date and time where they were signed by
concerned parties. Timestamping is widely recognized as an
important technique used to certify that an electronic document
was created, modified or signed at a certain point in time.
Timestamps are also helpful to solve problems related to
repudiation and long term of digital signatures. In fact, a
private key may be compromised and therefore the digital
signature for itself is not sufficient to warrant non repudiation.
In order to repudiate a signature, a malicious signer may even
claim that his credentials were already compromised when the
signature was issued. Digital signatures would also lose their
validity if the signing keys were revoked, even if the public key
does not compromise or the signature scheme is not broken.

In the literature, timestamping schemes have been proposed
independently of digital signature schemes. However, in real
life, manuscript documents (patent, will, purchase orders,
...) are always dated and signed at the same time. Digital

This work was supported by Conseil Général des Landes and the French
Ministry for Research under Project ANR-07-SESU-FLUOR.

D-P. Le is Ph.D. student at laboratoire LIUPPA, Université de Pau, B.P.
1155 64013 Pau France. (Contact him at phone: +33 5 58 51 37 18; e-mail:
duc-phong.le@etud.univ-pau.fr).

A. Bonnecaze is with laboratoire IML, Université de la Méditerranée,
13288 Marseille France. (Contact him at phone: +33 4 91 82 86 77; e-mail:
alexis.bonnecaze@esil.univmed.fr).

A. Gabillon is with laboratoire GePaSud, Université de la Polynésie
Francaise, 98702 FAA’A - Tahiti - Polynésie francaise (Contact him at phone:
+689 803 880; e-mail: alban.gabillon@upf.pf.

document should be dealt with the same philosophy. This
combination would allow us to simultaneously answer two
questions: “Who is the author of the document? ” and “When
was the document created, last modified or signed? ”. It
would guarantee integrity, authentication of document, and
non-repudiation.

In this paper, we propose a so called signtiming service.
Our scheme is to simultaneously perform in a single step both
functions of digital signature and provable timestamp of a
document. A trivial way to implement such a service is as
follows: one who wants to sign a message m adds the time
t into m, signs this concatenation and then sends to the TSA
(Time-Stamping Authority). The TSA checks the time t and
the validity of this signature. If so, the TSA certificates by
generating a timestamp for this signature. This implementation
requires the trust of the TSA. Besides, the TSA should
store all timestamp issued for verifying after. Further, the
TSA does not provide the off-line comparability property for
timestamps. In order to eliminate these drawbacks, we propose
a linking signtiming scheme. Our scheme is based on an
aggregate signature scheme introduced by Gentry and Ramzan
in [GR06]. The idea is to aggregate all the signatures received
by the TSA (a trusted third party) in a period of time and
produce a aggregate signature that depends one-way on all
these signatures. The aggregate signature is then published,
corresponding to that period of time. This aggregate signature
serves as a witness, and is used during the verification phase.
This value also allows us to verify timestamps in an off-line
manner, i.e. the verification is only based on the timestamps
itself, there needs no interaction with the timestamping service.
By both timestamping and signing documents, signtiming
prevents adversaries to back-date/forward-date or repudiate a
digital signature.

The paper is organized as follows. In Section III, we recall
the notion of timestamping schemes and their security re-
quirements. Section II briefly introduces existing timestamping
schemes, with their specific advantages and their weaknesses
and aggregate signatures. In Section IV, we present our solu-
tion to simultaneously sign and timestamp a document. Then,
we analyze the security of our scheme and conclude.

II. PRELIMINARY

A. Timestamping Scheme and its Security Requirements

1) Timestamping Schemes: A timestamping scheme is gen-
erally made up of three parties: Clients, Time-Stamping Au-
thority (TSA), Verifiers.



2

Most of the existing timestamping schemes are linking and
based on a notion of round. Such a scheme typically consists
of three phases:
• Aggregation : In this phase, the TSA collects all requests

in a round, constructs a authenticated dictionary and
computes a round token that depends on all requests
received in this round.

• Timestamps generation : The TSA generates times-
tamps for requests. Each timestamp consists of the round
token, the hash value of the document timestamped
and an authentication path proving that the round token
depends on the hash value.

• Publishing : The TSA publishes the round token and
other information concerning this round on a newspaper.
The published values allow us to verify the issued times-
tamps.

There exists two major methods to aggregate requests
(generate the commitment) in a round. The first method uses
a tree-like data structure such as the Merkle tree (e.g. in
[HS91], [BHS93]), the threaded authentication tree [BLS00]
or the skip list [BG05]. This method allows us to reduce to
a logarithmic factor the amount of information to be stored
and the verification consists in rebuilding a half of the tree.
In the other methods, the TSA uses a one-way accumulator
[BdM94] which represent an (algebraic) alternative to the
aforementioned data structures. Using these functions, the
size of timestamps and computation time are constant with
respect to the number of requests in the round. Besides that,
the verification process can be done in only one operation.
Accumulator functions which are generally used are modular
exponentiation. Unlike these existing methods, in this paper,
we make use of a aggregate signature scheme for this purpose.

2) Security Requirements: The security objectives of times-
tamping schemes is to guarantee the properties: correctness,
data integrity and availability. The first property requires that
the verification succeeds only if a timestamp issued by the
TSA is correct. The second means that an adversary cannot
tamper the timestamp by back or forward dating it, or modify
the request associated to it, or insert an old timestamp in the
list of timestamps previously issued. The last property means
that timestamping and verification must be available despite
processes failures.

In general, there exist two major types of attacks on times-
tamping protocols: back-dating and forward-dating attacks. In
the former attack, an adversary may try to “back-date” the
valid time-stamp. This is a fatal attack for applications in
which the priority is based on descendant time order (e.g.
patents ...). The adversary may corrupt the TSA and may try
to create a forged but valid timestamp token. In the later, an
adversary may try to “forward-date” the timestamp without
the approval of the valid requester. This is a fatal attack for
applications in which the priority is based on ascendant time
order (e.g. Will ...).

The forward-dating attacks can be prevented by requiring
the client’s identity which allows us to determine who had
timestamped the document. This type of attacks was analyzed
in more details by Matsuo and Oguro in [MO04]. Thus,

security problems of timestamping systems only concentrate
on back-dating attacks. The simple protocol is clearly not
secure against back-dating attacks if TSA is corrupted, but
the linking protocol is since a verifier can check the validity
by computing the chain of hash values using published hash
values.

B. Bilinear map

Our signtimig scheme makes use of a bilinear map, which
is often called a pairing, to implement a decision procedure
for the Diffie-Hellman problem. Typically, the pairing used is
a modified Weil or Tate pairing. In this section, we briefly
review the necessary facts about bilinear maps.

Let G1 be an cyclic (additive) group of a prime order q
and G2 be a multiplicative group of the same order q. A map
e : G1 × G1 → G2 is called a cryptographic bilinear map if
it satisfies the following properties:

1) bilinearity: for all P, Q ∈ G1 and a, b ∈
Zq, e(aP, bQ) = e(P, Q)ab

2) non-degeneracy: e(P, P ) is a generator of G2 and
therefore e(P, P ) 6= 1

3) computable: there exists an efficient algorithm to com-
pute e(P, Q) for all P,Q ∈ G1.

Earlier bilinear pairings, namely Weil pairing and Tate
pairing of algebraic curves were used in cryptography for the
MOV attack [MOV93] (Weil pairing) and FR attack [FR94]
(Tate pairing). These attacks reduce the discrete logarithm
problem on some elliptic or hyperelliptic curves to the discrete
logarithm problem in a finite field. Modified Weil Pairing
[BF01] and Tate Pairing [BLS04], [BGHS07] are examples
of cryptographic bilinear maps. The later pairing is, in prac-
tice, much more efficiently computable than the former. On
algebraic curves in particular, such pairings are very efficiently
computable using Miller’s algorithm [Mil04]. Currently, active
research is being carried out to obtain efficient algorithms to
compute pairings.

III. STATE OF THE ART

A. Timestamping Schemes

Here we are interested in provable timestamping scheme.
Indeed, it is easy to concatenate a date/time to a given
document but it is not simple to timestamp it in such a way
that the timestamp can prove the correctness of that date. The
first time-stamping schemes were presented in the early 90’s
by Haber and Stornetta [HS91] and Benaloh and de Mare
[BdM91]. In the years that follow, a lot of new schemes
were proposed and their security analyzed [MQ97], [BLLV98],
[BL98], [MAQ99], [Jus98].

Most of the existing systems rely on a centralized server
model that has to be trusted. The idea behind existing times-
tamping schemes is to prevent the server from forging fake
timestamp tokens by linking the tokens in a chronological
chain (see for example [HS91]). Periodically, a token is
published in an unalterable and widely witnessed media like
a newspaper. This scheme offers the following advantages:
• The publication provides us with an absolute time.



3

• After a token has been published at time t, the server
cannot forge a fake timestamp token former to time t.

• Since tokens are linked in a chronological chain, we can
obtain a relative dating of the requests submitted between
two publications.

However, this scheme has the following drawbacks:
• Before the next publication, the server can tamper the

tokens which have been issued since the last publication.
• The entire chronological chain must be stored for verifi-

cation.
In order to reduce the amount of information to be stored

(for verification) and to improve system scalability, most of
the protocols use an aggregation scheme. In this case, it is not
required to store all the timestamping tokens in order to allow
their verification. An aggregation scheme uses the notion of
round: a round is generally a period of time ∆t. The TSA
stores for each round a unique value called the aggregation
value and then it sends to the requesters all the necessary
information to re-compute this value. Aggregation schemes do
not give tamper-evident information about the chronological
order of timestamping requests processed in the same round.
A timestamping protocol using an aggregation scheme, may
build a chain by chronologically linking the aggregation values
obtained between two publications. The efficiency of the
protocol depends on the properties of the aggregation scheme.
We now introduce the two major aggregation scheme families.

The first family gathers schemes which use tree-like data
structure. The most famous structure is the Merkle Tree (recall
that a Merkle Tree is a data structure introduced by Ralph
Merkle in 1979 [Mer79] to build secure authentication and
signature schemes from hash functions). This method allows
us to reduce to a logarithmic factor the amount of information
to be stored and the verification consists in rebuilding a half
of the tree. However, protocols using such a scheme are not
always accurate and efficient. For example, when the number
of timestamped documents is very small while the frequency
of publication is very low (typically a week), the accuracy
of the timestamp may not be satisfying. Notice also that a
scheme using a binary tree is not efficient when the number
of documents is not close to a power of 2. The worst case is
being reached when this number is 2n + 1.

Recently, Blibech and Gabillon [BG05] proposed to use
a new structure called skip-list (developed by Bill Pugh
[Pug90]). A skip-list is a data structure that can be used in
place of a balanced tree. Algorithms for insertion and deletion
in skip lists are simpler and faster than equivalent algorithms
for balanced trees. Their scheme is totally ordered, i.e. it
allows us to compare two timestamps even in the same round.

The second family of schemes uses accumulator functions.
Accumulator functions [BdM94] represent an (algebraic) al-
ternative to the aforementioned data structures. Using these
functions, the verification process can be done in only one
operation. Moreover, the amount of information that has to
be stored does not depend on the number of timestamped
documents. Accumulator functions which are generally used
are modular exponentiation.

All these round based schemes need to regularly publish the
round tokens in a widely distributed media.

A distributed approach based on a network of trusted servers
is proposed by Bonnecaze et al. [BLGB06]. The objective
of their scheme is to construct a multi-server timestamping
scheme against denial of service attacks. Even though it is
secure, the high number of interactions between servers makes
the scheme difficult to implement. In [Bon06], Bonnecaze
proposed a scheme based on multisignatures without process
of publication. This scheme is reliable, robust and efficient but
requires a wide area network.

In this paper, we choose, for the sake of simplicity, to
define a system relying on a centralized server model. We
adopt a new aggregate system based on aggregate signatures.
Publication of round token uses a database, which may be
replicated for better availability.

B. Aggregate Signatures
An aggregate signature scheme is a digital signature that

supports aggregation. It allows a collection of signatures to
be compressed into one short signature. This single signature
along with a given original message mi, 1 ≤ i ≤ n and the
list of signers will convince the verifier that user i indeed
signed message mi, 1 ≤ i ≤ n. Ideally, the length of the
aggregate signature (excluding the messages and the public
keys of the signers) should be constant, independent of the
number of signed messages.

The concept of aggregate signature was introduced by
Boneh et al. in [BGLS03]. Their constructions are based on
BLS short signature scheme [BLS01] in groups with efficiently
computable bilinear maps. Their scheme is called general
aggregation scheme since aggregation can be done by anyone
and without the cooperation of the signers. Subsequently,
Lysyanskaya et al. [LMRS04] proposed a RSA-based sequen-
tial aggregate signature scheme. In a sequential aggregation
scheme, signature aggregation can only be done during the
signing process. Each signer sequentially modifies the aggre-
gate signature in turn by adding her signature to the current
aggregate. Both above schemes are provably secure in the
random oracle model. Recently, Lu et al. [LOS+06] proposed a
sequential aggregate signature scheme without random oracle
based on Waters signature [Wat05]. The security of their
scheme relies on the hardness of the Computational Diffie-
Hellman (CDH) problem in bilinear groups.

The total information needed to verify the aggregate sig-
nature must include individual signers’ public keys, whose
lengths depend on the security parameters of the scheme. Since
the verifier cannot be expected to know all n signers’ public
keys, practically, the length of an aggregate signature is not
significantly shorter than the length of n traditional signatures.
Hence, for large value of n, it is preferable to specify the
signers by their identities.

In [GR06], Gentry and Ramzan introduce an identity-based
aggregate signature (IBAS) which is secure in the random
oracle model. The use of an identity-based scheme has mainly
two advantages (for more information about identity-based
schemes, see [Sha85]):

1) Communication-efficiency: the signer does not need to
send an individual public key and certificate with its
signature.



4

2) All the signers are clients of the same Private Key
Generator (PKG). Hence, the verifier needs only one
traditional key (the one of the PKG) to verify identity-
based signatures on multiple documents.

Moreover, the scheme of Gentry et al. produces short sig-
natures and is efficient computationally. Verification requires
only three pairings computations, regardless of the number of
signers.

For these reasons, we base our signtiming scheme on this
IBAS.

IV. TIMESTAMPING SCHEME BASED ON AGGREGATE
SIGNATURES

In this section, we present our signtiming scheme based on
the aforementioned aggregate signatures. The entities of the
scheme are

1) the Private Key Generator: the PKG generates signer
private keys from its master secret and the signer’s
identity; It has a traditional public key;

2) the Time Stamping Authority: the TSA is the trusted
third party which is used to timestamp a document.
In our scheme, the TSA will mainly aggregate the
signatures after having checked the correctness of the
time, send a token to the signer and publish a round
token;

3) the signers sign their own document and send each
signature to the TSA. A signer can be considered as
a client: she wants to obtain a token from the TSA to
be able to prove the authenticity of her document;

4) the verifier verifies the validity of the timestamp from
an individual token and the round token.

In reality, the PKG can itself offer the timestamping service.
The PKG can thus play the role of the TSA.

A. Protocol

1) Timestamp Procedure: We suppose that time is dis-
cretized in rounds of length ∆t and all the signers are
synchronized with the TSA. Each round is identified by an
absolute date t. For example, a round can be identified by:
August 4th 2005 at 12.04am. We then describe the scheme.

1) Setup: The Private Key Generator (PKG) generates
parameters and keys:

a) generates groups G1 and G2 of prime order q with
admissible pairing e : G1 ×G1 → G2;

b) chooses an arbitrary generator P ∈ G1;
c) picks s ∈R Zq and sets Q1 = sP, Q2 = s2P ;
d) chooses cryptographic hash functions H1 :

{0, 1}∗ → G1, H2 : {0, 1}∗ → Zq and H a
traditional hash function like SHA1.

The PKG’s public key is
(G1, G2, e, P, Q1, Q2,H1,H2,H) and its secret is
s.

2) Signer with identity IDi and his private keys (which
were generated by the PKG), di,j = sPi,j and vi,1 =
(1/s)Pi,1, where Pi,j = H1(IDi, j) ∈ G1 for j ∈
{0, 1}

a) computes wt = H(t)
b) computes Pwt

= H1(wt) ∈ G1;
c) computes mi = H(Di), where Di is the document

the signer wants to have timestamped;
d) computes ci = H2(mi, IDi, wt) ∈ Zq;
e) generates random ri ∈ Zq;
f) computes its signature σi,t = (wt, S

′
i, T

′
i ), where

S′i = riPwt
+ di,0 + cidi,1, T ′i = riP .

g) sends σi,t and V ′
i = civi,1 to the TSA.

3) TSA checks whether equality wt = H(t) holds. If this is
not the case, TSA sends an error message to the signer.

4) TSA aggregates all the received signatures at round t
to obtain (wt, St, Tt) where St =

∑n
i=1 S′i, and Tt =∑n

i=1 T ′i .
5) TSA publishes the value Ht = H(St, Tt, wt) corre-

sponding to round t and returns to the signer with
identity IDi the token Ji,t = (t, St, Tt, L, SVi)TSA,
where L is a description of the list of the n signers’
identity and SVi =

∑
k∈[1,n],k 6=i V ′

k ∈ G1.

2) Verification Procedure: Someone who wishes to verify
the timestamp Ji,t for the document Di will:

1) Compute the hash of the document H(Di) and check
that it is part of the data that reconstructs the timestamp
for the round.

2) Seeks in the database the value Ht corresponding to
round t.

3) From the value Ji,t = (t, St, Tt, L, SVi), the verifier

a) checks whether Ht = H(St, Tt, wt)
b) and checks the following equality:

e(St, P ) = e(Tt, Pwt)e(Q1,

n∑

k=1

Pk,0+

+ ciPi,1)e(Q2, SVi), (1)

where Pwt = H1(wt) and ci = H2(mi, IDi, wt).
The token is declared valid when all steps are successfully
performed.

B. Correctness of the Scheme

It is quite easy to see that this property is achieved. The
verification procedure holds if and only if the signtiming
certificate is true. In fact, the verification equation (1) is
satisfied:

e(St, P ) = e(
n∑

k=1

S′i, P ) = e(
n∑

k=1

(riPwt + di,0 + cidi,1), P )

= e(
n∑

k=1

riPwt , P )e(
n∑

k=1

di,0 + ciPi,1, P )e(
n∑

k=1,k 6=i

cidi,1, P )

= e(Tt, Pwt)e(Q1,

n∑

k=1

Pk,0 + ciPi,1)e(
n∑

k=1,k 6=i

civi,1, Q2)

= e(Tt, Pwt)e(Q1,

n∑

k=1

Pk,0 + ciPi,1)e(Q2, SVi)



5

C. Discussion

Note that, our aggregate signature is slightly different from
that of Gentry [GR06]. To verify the tokens, we need the hash
values mi of the documents sign-timestamped in the round
which would be sent along with the final token to clients.
Those hash values are different from each other. This would
cause the size of the token to grow linearly with n. In order to
eliminate this disadvantage, our scheme requires each signer
to send to the TSA V ′

i = civi,1 instead of mi, then the TSA
computes the value SVi =

∑
i∈[1,n],i6=k V ′

k and then send it to
the client i for the purpose of verification.

Our scheme is basically non-interactive and does not need
the cooperation of other clients to verify the timestamp. Length
of the tokens does not depend on the number of signtimed
documents. The published round token is a binary string
(typically 160 bits if the hash function H is SHA1) and
the token of a particular document is represented by three
points, a representation of the time t and the list of signers L.
Length has to be compared to the token length of existing time-
stamping schemes. The most common schemes use Merkle
trees and have tokens whose lengths are logarithmic with
respect to the number of documents in a round. Skip lists based
schemes lead to a similar length. Hence, our protocol is more
efficient in term of token length. In term of computation, the
protocol requires four pairing computations for verification.
Note that every modern computer is able to execute the
verification in less than one second.

The use of identity based concept both simplifies the proto-
col and makes the tokens short. On the other hand, the private
key generator knows the master key and may become a threat.
We suggest the use of a distributed key generation protocol
such as that of Pedersen [Ped91] or Gennaro et al. [GJKR07].
In these protocols, a master key is generated in a distributed
way. Each of the m PKGs constructs a random share. At any
given time only a part of the m PKGs must be online in order
for a client to retrieve his private key.

Regarding the protocol itself, it is important to see that the
TSA cannot cheat when sending the value SVi to the signer.
Actually, finding a value SVi (which verifies the equality of
the verification) without the knowledge of the secret value s
is as difficult as breaking Diffie-Hellman problem.

V. SECURITY ANALYSIS

A. Security Requirements

There exist two major types of attacks on timestamping
protocols: “back-dating attack” and “forward-dating attack”.
In the back-dating attack, an adversary may try to back-
date a valid timestamp. This is a fatal attack for applications
in which the priority is based on descendant time order,
e.g. in the case of a patent submission. The adversary may
corrupt the TSA and collude with the TSA to create a forged
but valid timestamp. In another configuration, the adversary,
without colluding with the TSA, may create a fake timestamp,
which can be successfully verified due to the correctness of
the proof, by either eavesdropping or pre-computing. The
simple protocol [ACPZ01] is clearly not secure against TSA
corruption, but the linking protocol is.

In the forward-dating attack, an adversary may try to
forward-date the timestamp without the approval of the valid
requester. This is a fatal attack for applications in which the
priority is based on ascendant time order. For example, an
adversary will use this type of attacks if he wants to deal with
the Will.

B. Analysis

The security of our signtiming scheme follows directly
from the security of the identity-based aggregate signature
scheme in [GR06] which is provably secure against existen-
tial forgery under an adaptively chosen-message and chosen-
identity attack in the random oracle model. In this section,
we demonstrate that the scheme is secure against two major
types of attacks on the timestamping protocols: back-dating
and forward-dating.

Theorem 5.1: If the identity based aggregate signature
scheme is secure, then the signtiming scheme described above
is secure.

Back-dating: Consider the following situation, Alice, an
inventor, needs to timestamp her patent d at time t. After
some time, the invention is disclosed to the public. Bob,
an adversary tries to steal the right to Alice’s invention.
He slightly modifies Alice’s invention (at least the author’s
name should be replaced), and tries to back-date it relative
to Alice’s invention. Bob is successful if he can construct a
signtimestamp of the modified invention d′ such that it can be
verified at time t′ (t′ < t). Bob can then use this signtimestamp
to claim his rights to the invention.

We consider two cases, the adversary cannot collude with
the TSA; the adversary can collude with the TSA.

In the first case, an adversary tries to back-date a document
(invention) using a published round token and/or some valid
signtimestamps of this round he received at time t′ in the past.
This is impossible if the ID-based aggregate signature scheme
in [GR06] is existential unforgeable.

In the second case, if the adversary colludes with the
TSA, then he can obtain a valid signtimestamp token for
any document at any time. We assume that the adversary can
learn the content of the patent either after disclosure of the
inventor or after the publication of the round token applying
to the invention. In order to backdate the invention, the
adversary, first provided an aggregate signature, all signatures
and other information concerning the aggregate signature, tries
to re-generate this aggregate signature so that it contains his
signature on the invention. This is impossible if the above
ID-based aggregate signature scheme has the property of
existential unforgeability.

Forward-dating: Consider a client who has sign-
timestamped the hash of his will which initially favors the
adversary. After some time the will is updated, writing the
adversary out and then is sign-timestamped again. Assuming
that the adversary has access to the hash of the original will,
he can once again re-register the hash of the original will.
The TSA signtimestamps the hash of the “first” will and then
sends to the adversary a token which can be used to prove
authenticity of the “first” will.



6

These attacks can be prevented by requiring the client’s
identity. This allows us to determine who had timestamped the
document. This type of attack was analyzed in more details
by Matsuo and Oguro in [MO04]. In fact, in order to carry
out a forward-dating attack, the adversary, after obtaining the
original will, may try to forge the identity of the client. In our
signtiming scheme, the signature of each client guarantees the
authentication of document. Hence, the adversary can forward-
date the document only if he can break digital signatures of
the honest client.

Besides above dating attacks, an adversary can also make
attacks concerning time reference of the signtiming scheme
such as: masquerade, delay, replay [MQ97]. In order to prevent
these attacks, we recommend using the Network Time Protocol
(NTP).

VI. CONCLUSION

In this paper, we presented a new service called signtiming.
Its goal is to sign a document and securely time-stamp it at the
same time. This new service provides authentication, integrity
and a provable dating. Our scheme makes use of an identity
based aggregate signature. Hence, there is no problem of key
management and the aggregate signature is really efficient.
Since our scheme can easily be implemented, it is expected to
be helpful in many applications.

REFERENCES

[ACPZ01] C. Adams, P. Cain, D. Pinkas, and R. Zuccherato. Internet X.509
Public Key Infrastructure Time-Stamp Protocol (TSP), 2001.

[BdM91] J. Benaloh and M. de Mare. Efficient broadcast time-stamping.
Technical Report 1 TR-MCS-91-1, Clarkson University Depart-
ment of Mathematics and Computer Science, August 1991.

[BdM94] J. Benaloh and M. de Mare. One-way accumulators: a de-
centralized alternative to digital signatures. In EUROCRYPT
’93: Workshop on the theory and application of cryptographic
techniques on Advances in cryptology, pages 274–285, Secaucus,
NJ, USA, 1994. Springer-Verlag New York, Inc.

[BF01] D. Boneh and M. K. Franklin. Identity-based encryption from the
Weil pairing. In CRYPTO ’01: Proceedings of the 21st Annual
International Cryptology Conference on Advances in Cryptology,
pages 213–229, London, UK, 2001. Springer-Verlag.

[BG05] K. Blibech and A. Gabillon. Chronos: An authenticated dictionary
based on skip lists for timestamping. In Proc. of 12th ACM Con-
ference on Computer Security (Workshop Secure Web Services),
George Mason University, Fairfax, VA, USA, November 2005.

[BGHS07] P. S. Barreto, S. D. Galbraith, C. O. Heigeartaigh, and M. Scott.
Efficient pairing computation on supersingular abelian varieties.
Des. Codes Cryptography, 42(3):239–271, 2007.

[BGLS03] D. Boneh, C. Gentry, B. Lynn, and H. Shacham. Aggregate and
verifiably encrypted signatures from bilinear maps, 2003.

[BHS93] D. Bayer, S. Haber, and W. S. Stornetta. Improving the efficiency
and reliability of digital time-stamping. In Sequences II: Methods
in Communication, Security, and Computer Science, pages 329–
334, London, UK, 1993. Springer-Verlag.

[BL98] A. Buldas and P. Laud. New linking schemes for digital time-
stamping. In ICISC, pages 3–13, 1998.

[BLGB06] A. Bonnecaze, P. Liardet, A. Gabillon, and K. Blibech. Secure
time-stamping schemes: A distributed point of view. Annals of
Telecommunications, 61(5-6):662–681, May-June 2006.

[BLLV98] A. Buldas, P. Laud, H. Lipmaa, and J. Villemson. Time-stamping
with binary linking schemes. In CRYPTO, pages 486–501, 1998.

[BLS00] A. Buldas, H. Lipmaa, and B. Schoenmakers. Optimally efficient
accountable time-stamping. In Public Key Cryptography, pages
293–305, 2000.

[BLS01] D. Boneh, B. Lynn, and H. Shacham. Short signatures from
the Weil pairing. In ASIACRYPT ’01: Proceedings of the
7th International Conference on the Theory and Application of
Cryptology and Information Security, pages 514–532, London,
UK, 2001. Springer-Verlag.

[BLS04] P. S. L. M. Barreto, B. Lynn, and M. Scott. Efficient implementa-
tion of pairing-based cryptosystems. J. Cryptol., 17(4):321–334,
2004.

[Bon06] A. Bonnecaze. A multi-signature for time stamping scheme.
In SAR/SSI 06: The 1st Conference On Security in Network
Architectures and Information Systems, Seignosse, France, June
2006.

[FR94] G. Frey and H-G. Rück. A remark concerning m-divisibility
and the discrete logarithm in the divisor class group of curves.
Mathematics of Computation, 62:865–874, 1994.

[GJKR07] R. Gennaro, Stanislaw Jarecki, Hugo Krawczyk, and Tal Rabin.
Secure distributed key generation for discrete-log based cryp-
tosystems. J. Cryptol., 20(1):51–83, 2007.

[GR06] C. Gentry and Z. Ramzan. Identity-based aggregate signatures.
In Moti Yung, Yevgeniy Dodis, Aggelos Kiayias, and Tal Malkin,
editors, Public Key Cryptography, volume 3958 of Lecture Notes
in Computer Science, pages 257–273. Springer, 2006.

[HS91] S. Haber and W. S. Stornetta. How to Time-Stamp a Digital
Document. In CRYPTO ’90: Proceedings of the 10th Annual
International Cryptology Conference on Advances in Cryptology,
pages 437–455, London, UK, 1991. Springer-Verlag.

[Jus98] M. Just. Some timestamping protocol failures. In NDSS 98: Pro-
ceedings of the Symposium on Network and Distributed Security,
pages 89–96, San Diego, CA, USA, March 1998.

[LMRS04] A. Lysyanskaya, S. Micali, L. Reyzin, and H. Shacham. Sequen-
tial aggregate signatures from trapdoor permutations. In Christian
Cachin and Jan Camenisch, editors, Advances in Cryptology
- EUROCRYPT 2004, volume 3027/2004 of Lecture Notes in
Computer Science, pages 74–90, New York, NY, USA, 2004.
Springer Berlin / Heidelberg.

[LOS+06] S. Lu, R. Ostrovsky, A. Sahai, H. Shacham, and B. Waters. Se-
quential aggregate signatures and multisignatures without random
oracles. In EUROCRYPT, pages 465–485, 2006.

[MAQ99] H. Massias, X. Serret Avila, and J.-J. Quisquater. Timestamps:
Main issues on their use and implementation. In WETICE
’99: Proceedings of the 8th Workshop on Enabling Technologies
on Infrastructure for Collaborative Enterprises, pages 178–183,
Washington, DC, USA, 1999. IEEE Computer Society.

[Mer79] R. C. Merkle. Secrecy, authentication, and public key systems.
PhD thesis, 1979.

[Mil04] V.S. Miller. The Weil Pairing, and Its Efficient Calculation. J.
Cryptol., 17(4):235–261, 2004.

[MO04] S. Matsuo and H. Oguro. User-side forward-dating attack on
timestamping protocol. In Proc. of the 3rd International Workshop
for Applied Public Key Infrastructure (IWAP’04), pages 72–83,
2004.

[MOV93] A. Menezes, T. Okamoto, and S. A. Vanstone. Reducing elliptic
curve logarithms to logarithms in a finite field. IEEE Transactions
on Information Theory, 39(5):1639–1646, 1993.

[MQ97] H. Massias and J. Quisquater. Time and cryptography. Technical
report, Universit’e catholique de Louvain, 1997.

[Ped91] T. P. Pedersen. A threshold cryptosystem without a trusted party
(extended abstract). In EUROCRYPT, pages 522–526, 1991.

[Pug90] W. Pugh. Skip lists: a probabilistic alternative to balanced trees.
Commun. ACM, 33(6):668–676, 1990.

[Sha85] A. Shamir. Identity-based cryptosystems and signature schemes.
In Proceedings of CRYPTO 84 on Advances in cryptology, pages
47–53, New York, NY, USA, 1985. Springer-Verlag New York,
Inc.

[Wat05] B. Waters. Efficient identity-based encryption without random
oracles. In EUROCRYPT ’05, pages 114–127, 2005.


