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Abstract. The aim of timestamping systems is to provide a proof-of-
existence of a digital document at a given time. Such systems are impor-
tant to ensure integrity and non-repudiation of digital data over time.
Most of the existing timestamping schemes use the notions of round (a
period of time) and round token (a single value aggregating the times-
tamping requests received during one round). Such schemes have the
following drawbacks: (i) Clients who have submitted a timestamping
request must wait for the end of the round before receiving their times-
tamping certificate (ii) TimeStamping Authorities (TSA) based on such
schemes are discrete-time systems and provide relative temporal authen-
tication only, i.e. all the documents submitted during the same round
are timestamped with the same date and time. (iii) the TSA can tamper
timestamps before the round token is published in a widely distributed
media. In this paper, we define a new timestamping scheme which over-
comes these drawbacks. First, we use chameleon hash functions to com-
pute the round token at the beginning of the round. Therefore, times-
tamping certificates can be returned to clients immediately after receiv-
ing their request. There is no need to wait for the end of the round.
Second, our scheme is distributed, i.e. several servers cooperate to com-
pute round tokens and timestamping certificates. Such a distribution of
servers allows us to define a continuous time scheme secure against all
kind of attacks and providing us with provable absolute temporal au-
thentication.

Keywords: Timestamping scheme, Merkle tree, Chameleon hash func-
tion, Absolute timestamp.

1 Introduction

The use of digital documents is growing rapidly, nowadays. It thus becomes
very important to ensure their security when they are stored/exchanged on the
open network environment. Cryptographic primitives, including digital signa-
tures, help to provide ongoing assurance of authenticity, data integrity, confi-
dentiality and non-repudiation. Besides that, it is also important to be able to
certify that an electronic document has been created at a certain date. Times-
tamping protocols, which prove the existence of a message/document at a certain
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time, are mandatory in many domains like patent submissions, electronic votes
or electronic commerce, where frauds are related to monetary (or even political)
interests.

Moreover, timestamping services can serve as non-repudiation services. A
digital signature is only legally binding if it was made when the user’s certificate
was still valid. In reality, to prevent eventual compromise concerning the private
key, key pairs used in public key cryptosystems have a limited lifetime which
can be shorter than the document time-to-life. Therefore, the digital signature
is not sufficient to guarantee non repudiation. In order to repudiate a signature, a
malicious signer could claim that his credentials were already compromised when
the signature was issued. A secure timestamp bound to the signed document can
prevent such repudiation. Indeed, thanks to the timestamp, it becomes possible
to determine, at a later time, if the document was signed (using the owner’s
private signature key) within the validity period of the certificate or not.

Most of the existing timestamping schemes use the notions of round (a period
of time or a number of requests) and round token (a single value aggregating
the timestamping requests received during one round). Such schemes have the
following drawbacks: (i) Clients who have submitted a timestamping request
must wait for the end of the round before receiving their timestamping certificate
(ii) TimeStamping Authorities (TSA) based on such schemes are discrete-time
systems and provide relative temporal authentication only, i.e. all the documents
submitted during the same round are timestamped with the same date and time.
(iii) the TSA can tamper timestamps before the round token is published in a
widely distributed media.

In this paper, we define a new round-based timestamping scheme which over-
comes these drawbacks. First, we use chameleon hash functions to construct the
authenticated data tree (in this paper, we use the Merkle tree) and to compute
the round token at the beginning of the round. Second, our scheme is distributed,
i.e. several servers cooperate to compute round tokens and timestamping certifi-
cates.

Chameleon hash function was introduced by Krawczyk and Rabin in [17] for
the purpose of constructing chameleon signatures. A chameleon hash function
is a trapdoor collision resistant hash function. It differs from other conventional
one-way hash methods in that there exists a private or trapdoor key associated
with the chameleon hash function that makes it computationally feasible for the
owner of the private key to find collisions; where finding a collision is defined
as the ability to compute multiple messages which map to the same hash value.
Formally, let Hr : {0, 1}m × {0, 1}r 7→ {0, 1}k be a chameleon hash function
associated with a hashing key HK and a trapdoor key TK. Then, it is easy to
find r such that Hr(m, r) = Hr(m0, r0) when (HK,TK) and (m,m0, r0) are
given, however, it is hard to find two messages m,m0 and two auxiliary numbers
r, r0 such that Hr(m, r) = Hr(m0, r0) when only HK is given.

For a given round, our timestamping procedure consists of two phases. The
first phase is performed off-line before the round begins (before receiving the
timestamping requests) and the second phase is performed on-line after the
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beginning of the round (while receiving the requests). Using a chameleon hash
function allows the TSA to pre-construct an authenticated data tree and pre-
generate timestamps and round token in the off-line phase. Later, in the on-line
phase, when the ith request of the round arrives, the TSA only needs to find a
collision for the timestamp at the position i in the authenticated data tree and
returns the ith timestamp to the client. Consequently, a timestamping certificate
with absolute time can be returned to the client immediately after receiving his
request. The same technical idea was used to construct on-line/off-line signatures
[21].

The biggest danger of using a chameleon hash function lies in the possible
compromission of the trapdoor key TK. We eliminate such a risk by distributing
the trapdoor key in a network of servers. Each server knows only a fragment of
the trapdoor key TK. Therefore, any calculation requiring the trapdoor key can
only be done by a collaboration of a given number of servers. This number λ is
called the threshold. We need a collaboration of at least λ servers to get a result.
Such a system is called a (λ, n)-threshold cryptographic system. In our scheme,
if k is the number of corrupted servers, then the threshold must be greater than
2k in order for the calculation to succeed. The use of a threshold scheme has
two objectives:

1. Avoiding the compromission of the trapdoor key.
2. Proving the absolute time. The absolute time must be checked by at least

λ servers. In our scheme, we need λ = 2k + 1, when the number of failed or
malicious servers is at most k1.

Threshold secret sharing protocols frequently require one trusted dealer which
generates and gives the secret to the n servers. In order to eliminate such a
trusted dealer, we use a Distributed Key Generation (DKG) protocol to gener-
ate the hashing key HK and trapdoor key TK.

The remainder of this paper is organized as follows. Section 2 introduces
some basic concepts about timestamping. Section 3 previews some basic nota-
tions used in this paper, chameleon hash functions and security requirements for
timestamping schemes. In Section 4, we present our scheme. In Section 5, we
analyze its security. Finally, we conclude the paper in Section 6.

2 Basic Concepts

2.1 Naive Protocol

The first idea on timestamping is naive. Whenever a client has a document
to timestamp, he or she transmits the document D to the timestamping ser-
vice (TSS); the service timestamps D and retains a copy of the document for
safe-keeping and verifying. Such protocol has a lot of problems: privacy, band-
width, storage and incompetence. Solutions using cryptographic tools like secure
collision-resistant hash functions and digital signatures were proposed to improve
1 We require k < n/3 to guarantee robustness
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the naive solution [14]. However, these solutions require a trusted service (with
a precise clock) that provides data items with current time value and digitally
signs them [1]. The assumption of unconditionally trusted service hides a risk
of possible collusions that may not be acceptable in applications. The risks are
especially high in centralized applications. The first attempt to eliminate trusted
services from timestamping schemes was made by Haber and Stornetta in [14].
They proposed two rather different approaches: linking scheme and distributed
trust scheme. The first one relies on a centralized server model that has to be
trusted. The idea behind this scheme is to prevent the server from forging fake
time-stamp tokens by linking linearly the timestamps in a chronological chain.
The second approach consists in distributing the required trust among the users
of the service.

2.2 Absolute vs. Relative Temporal Authentication

The main objective of timestamping schemes is temporal authentication. Exist-
ing timestamping schemes provide two types of temporal authentication: absolute
authentication [1, 14] and relative authentication [2, 10, 8, 4]. Absolute authenti-
cation provides absolute timestamps positioning the document at a particular
point in time, based upon the time given by a trusted, mutually agreed upon
source. Existing absolute authentication schemes presuppose that the TSS is a
trusted entity. Relative authentication provides relative timestamp containing
information that only allows verifying if a document was timestamped before or
after another document. For the relative scheme the existence of a trusted entity
is not necessary. There are mechanisms which guarantee that a document will
always be timestamped with the current date and hour even if the TSS is mali-
cious. For applications like patent submissions, electronic votes, ticket bookings
... the relative authentication is enough to be applicable. However, the absolute
timestamp is very important for some applications (e.g. for contracts, bills ...).
In this case, we need to know exactly when a contract (or a bill) was signed or
created. Besides, the absolute timestamp also allows us to compare timestamps
generated by several TSAs that use the same or a different scheme.

2.3 Existing timestamping schemes

Simple schemes : A simple timestamping scheme is typically as the above naive
solution. Such a scheme can use cryptographic tools like hash functions, digital
signatures to guarantee the confidentiality and the integrity of documents. The
timestamp tokens are independent from each other. Simple schemes are straight-
forward and easy to implement. On the other hand, their main weakness is that
the TSA has to be trusted unconditionally. Since the TSA is the entity that guar-
antees the correctness of the time parameter, a malicious TSA can backdate or
forward-date timestamps.

Linking schemes : The first linking scheme which links linearly timestamps was
proposed by Haber and Stornetta [14]. The linear linking scheme poses a very
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high demand on cooperation among clients, the verification cost thus is very ex-
pensive. Moreover, in order to prevent fake sub-chain attacks which were showed
in [16], it may impose a long computation time before a trusted timestamp is
encountered on the chain, it is thus impractical.

Later, various improvements for the linking scheme have been proposed in
[3, 2, 15, 10, 8, 4]. These schemes use the notion of round: a round can be a given
number of requests, a period of time or a combination of both. At the end
of each round a round token is calculated which depends on all the requests
submitted during that round and on the previous round token. This allows the
TSA to reduce the amount of information to be stored (for verification) and to
improve system scalability. Subsequently, round tokens are regularly published in
a widely distributed media (e.g. a newspaper). After the publication it becomes
impossible to forge timestamps (either to issue fake ones afterward, or modify
already issued ones), even for the TSA. Some of these schemes are said to be
partially ordered [3, 2, 15] while others are said to be totally ordered [8, 4].

– With partially ordered schemes, documents submitted during a given round
are all timestamped with the same time.

– With totally ordered schemes, documents submitted during a given round
are still all timestamped with the same time, but it becomes possible to
order the requests and answer the question “was this document submitted
before that one ?”.

The main drawbacks of existing round-based schemes are the followings:

– The time attached to a document is the time corresponding to the round.
Consequently, all the documents which were submitted during the same
round were timestamped with the same time. It is important to note that
even totally ordered schemes are not continuous time schemes and comparing
timestamps issued from different totally ordered TSS can be impossible.

– Timestamps are generated and sent to clients at the end of the round. Thus,
the TSA can alter timestamps if the round is not yet finished. It can even
tamper timestamps as long as one reference token has not been published in
a widely distributed media.

Distributed timestamping schemes : In such a scheme, trust is needed among
the users of the service [14] or among the network of trusted servers [6, 23, 7]. In
Haber-Stornetta’s scheme [14], Alice who would like to timestamp a document
sends her request to a set of k users of the service and receives in return from
these users a signed message that includes the time t. Her timestamp consists
of k signatures. The main drawback of this protocol is the number of available
users needed to answer to Alice’s request.

A distributed approach based on a network of TSAs is proposed by Bonnecaze
et al. [6, 7] and Tulone [23]. In general, these schemes use a threshold scheme by
fault-tolerantly distributing the secret information (e.g. the key which is used to
sign the document) among a cluster of trusted servers. A subset of the network
of TSAs signs and attaches the time t to the document when a new request
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arrives. In order to make backdating possible, all involved TSAs have to become
part of the malicious attack. Distributed schemes thus decrease the dependence
on the TSA and also increase the availability of the timestamping service and
resistance to Denial of Service attacks. Even though it is secure, the high num-
ber of interactions between servers makes the scheme difficult to implement.
Furthermore, like in simple timestamping schemes, distributed schemes should
store all timestamping certificates for verifying afterward.

Another drawback of both above approaches is the lifetime of the signatures
which were sent to clients by trusted servers (or by the users of service). If the
keys pair of a signer is expired, valid timestamps cannot be verified.

3 Preliminary

3.1 Notations

We denote by {0, 1}∗ the set of all (binary) strings of finite length. If X is a
string then |X| denotes its length in bits. If X, Y are strings then X‖Y denotes an
encoding from which X and Y are uniquely recoverable. If S is a set then X ∈R S
denotes that X is selected uniformly at random from S. For convenience, for any
k ∈ N we write X1, . . . , Xk ∈R S as shorthand for X1 ∈R S, . . . ,Xk ∈R S.

3.2 Cryptographic Tools

Authenticated Data Structure Authenticated data structures provide cryp-
tographic proofs that their answers are as accurate as the author intended, even
if the data structure is being maintained by a remote host. In this section we
briefly recall the most known authenticated data structure proposed by Merkle
[19], called Merkle tree.

A Merkle tree is a binary tree with an assignment of a string to each node:
n 7→ P (n), such that the parent’s node values are one-way functions of the
children’s node values.

P (nparent) = H(P (nleft)‖P (nright)),

where H denotes the one-way function, a possible choice of such a function is
SHA-1 in practical.

The authentication path of a leaf leafi, denoted authi, consists of the interior
nodes that are siblings on the path from the root to the leaf leafi.

Chameleon Hash Function The principal cryptographic tool we use in this
paper is a chameleon hash function. Informally, a chameleon hash function
is a special type of hash function, whose collision resistance depends on the
user’s state of knowledge: Without knowledge of the associated trapdoor, the
chameleon hash function is resistant to the computation of pre-images and of
collisions. However, with knowledge of the trapdoor, collisions are efficiently
computable.
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Definition 1. A chameleon hash function [17], also called trapdoor hash func-
tion, is associated with a public (hashing) key, denoted HK, and a correspond-
ing private key (the trapdoor for finding collisions), denoted TK. The chameleon
hash function, denoted Hr can be computed efficiently given the value of HK.
On input a message m ∈M and a random string r ∈R R, the function generates
a hash value Hr(m, r) which satisfies the following properties :

– Collision Resistance. There is no probabilistic polynomial time algorithm
A that on input the public key HK outputs, with a probability which is not
negligible, two pairs (m1, r1) and (m2, r2) such that Hr(m1, r1) = Hr(m2, r2).

– Trapdoor Collisions. There exists a polynomial time algorithm A such
that on inputs the pair (HK,TK), a pair (m1, r1), and a message m2, then
A outputs r2 such that :
• Hr(m1, r1) = Hr(m2, r2).
• If r1 is distributed uniformly, m1, and (m2, r2) such that H(m1, r1) =

H(m2, r2), then r2 is computationally indistinguishable from uniform in
R.

Chameleon hash functions can be constructed from the hardness of factoring,
discrete logarithm problem. Reader can refer to [17] for more details.

Shamir Secret Sharing Shamir’s secret sharing scheme [20] is a threshold
scheme based on polynomial interpolation. It allows a dealer D to distribute
a secret value s to n players, such that at least λ < n players are required to
reconstruct the secret. In this section, we briefly recall his protocol.

To share the secret s among players P1, P2, . . . , Pn, such that λ players are
required to reconstruct the secret:

1. Dealer D creates a random polynomial f(x) of degree λ− 1:

f(x) = a0 + a1x + · · ·+ aλ−1x
λ−1.

This polynomial is constructed over a finite field, such that the coefficient
a0 is the secret s and all other coefficients are random elements in the field,
the field is known to all participants.

2. Dealer D publicly chooses n random distinct evaluation points: xj 6= 0, and
secretly distributes to each player Pj the share sj = f(xj), j = 1 . . . n.

To reconstruct the secret from shares s1, s2, ..., sk:

1. Use Lagrange interpolation to find the unique polynomial f(x) such that
deg f(x) < λ and f(xj) = sj for j = 1, 2, . . . , k.

2. Reconstruct the secret to be f(0).

Lagrange interpolation:
f(x) =

∑λ
i=1 f(i)li(x), where li(x) is the Lagrange polynomial: li(x) =

∏
j 6=i(x−xj)∏
j 6=i(xi−xj)

which has value 1 at xi, and 0 at every other xj .
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3.3 Security Requirements

The security objectives of timestamping schemes is to guarantee the properties:
correctness, data integrity and availability. The first property requires that the
verification succeeds only if Tx is correct. The second means that an adversary
cannot tamper the timestamp by back or forward dating it, or modify the request
associated to it, or insert an old timestamp in the list of timestamps previously
issued. The last property means that timestamping and verification must be
available despite processes failures.

In general, there exist two major types of attacks on timestamping protocols:
back-dating and forward-dating attacks. In the former attack, an adversary may
try to “back-date” the valid time-stamp. This is a fatal attack for applications
in which the priority is based on descendant time order (e.g. patents ...). The
adversary may corrupt the TSA and may try to create a forged but valid times-
tamp token. In the later, an adversary may try to “forward-date” the timestamp
without the approval of the valid requester. This is a fatal attack for applications
in which the priority is based on ascendant time order (e.g. Will ...).

The forward-dating attacks can be prevented by requiring the client’s identity
which allows us to determine who had timestamped the document. This type of
attacks was analyzed in more details by Matsuo and Oguro in [18]. Thus, secu-
rity problems of timestamping systems only concentrate on back-dating attacks.
The simple protocol is clearly not secure against back-dating attacks if TSA is
corrupted, but the linking protocol is since a verifier can check the validity by
computing the chain of hash values using published hash values. The strongest
security condition against back-dating attacks for a timestamping scheme is pre-
sented by Buldas and Laur [9] which is defined using the following attack-scenario
with a malicious Server:

1. TSA computes and publishes a commitment R. Note that TSA is assumed
to be malicious, so there are no guarantees that R is created by aggregating
a set X of requests.

2. Alice, an inventor (client), creates a description DA ∈ {0, 1}∗ of her invention
and protects it somehow, possibly by filing a patent or obtaining a time
stamp.

3. Some time later, the invention DA is disclosed to the public and the TSA
tries to steal it by showing that it knew the invention long before Alice
timestamped it. The TSA creates a slightly modified version D′

A of DA (at
least the author’s name should be replaced).

4. Finally, the TSA back-dates a hash value x′ = H(D′
A) of the modified inven-

tion document, by finding a timestamping certificate Cx′ , so that Verify(x′, Cx′ , R) =
1. The TSA can then use this timestamp to claim his rights to the invention.

4 Our Construction

In this section, we describe a round-based distributed timestamping scheme
which provides absolute temporal authentication. The basic idea is to make
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use of the chameleon hash function to pre-construct a Merkle tree before each
round. When the TSA receives the ith timestamping request, it finds a collision
at the ith position in the Merkle tree and immediately returns a timestamping
certificate to the client. In order to guarantee the secret of the trapdoor key of
the chameleon hash function, our scheme uses a threshold secret sharing scheme
which enables the trapdoor key to be shared among n servers such that a subset
of them can find a trapdoor collision of the chameleon hash function without
reconstructing the key. In other words, at most k of the n servers in a threshold
timestamping scheme may be compromised without endangering the security of
the timestamping scheme. Our timestamping scheme is robust with k < n/3
and can detect compromised servers when they try to generate a faulty partial
trapdoor collision.

The timestamping service consists of two types of servers: a reception server
and several hash servers. The former will receive requests, add time and return
timestamps to clients. The later consists of n servers, each of them keeps a
fragment of the trapdoor key of the TSA and will make a partial trapdoor
collision of the chameleon hash function when a new timestamping request will
arrive. The trapdoor key TK is generated and stored in distributed manner. This
key can be regularly renewed after some rounds or when a number of corrupted
servers is superior to a threshold k. Before each round, (m′

i, r
′
i) pairs are also

generated and stored in a distributed manner in the hash servers. Then, the
reception server generates hash digests hi = Hr(m′

i, r
′
i), constructs the Merkle

tree and publishes the round token and the hashing key HK in a newspaper.
When Alice sends a document she want to have timestamped to the TSA, a
subset of 2k+1 hash servers finds a partial trapdoor collision ri and then returns
a timestamp certificate to the client. In particular, the timestamping scheme
works as follows:

Let P be the set of n hash servers, l be a security parameter of system,
r be a security parameter of random strings in the chameleon hash function,
H : {0, 1}∗ 7→ {0, 1}l be a collision-resistant hash function (e.g. SHA-1) and
Hr : {0, 1}l × {0, 1}r 7→ {0, 1}l be a chameleon hash function. In describ-
ing, we use the Merkle tree and the log-discrete-based chameleon hash function
Hr(m, r) = Hr(gr+xm) = Hr(grhm), where h = gx, x is trapdoor key and
g, h are hash keys. This chameleon hash function was presented in [12], and
its security relies on one-more-discrete-logarithm assumption. We also denote
M = {0, 1}l and R = {0, 1}r.

Key generation. In describing of the key generation, we make use of the Dis-
tributed Key Generation (DKG) protocol for discrete-log-based threshold cryp-
tosystems of Gennaro et al. [13] to securely generate keys and m′

i, r
′
i pairs.

1. Use the DKG protocol to create h = gx, where x ∈R Zp is the trapdoor
key and Pj ∈ P, 1 ≤ j ≤ n receives the share xj for a degree k polynomial
px(y) ∈ Zp[y] such that px(0) = x.

2. Publish the hashing keys g, h. Each hash server Pj ∈ P retain xj .
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Setup. Suppose that 2m be the number of requests pre-generated for each
round. For 1 ≤ i ≤ 2m:

1. Use the DKG protocol to create gr′
i , where r′i ∈R R. Each hash server Pj ∈ P

receives the share r′ij for a another degree k polynomial pr′
i
(y) ∈ Zp[y] such

that pr′
i
(0) = r′i.

2. Use the DKG protocol to create hm′
i , where m′

i ∈R M. Each hash server
Pj ∈ P receives the share m′

ij for a another degree k polynomial pm′
i
(y) ∈

Zp[y] such that pm′
i
(0) = m′

i.

3. Use the DKG protocol to generate shares zij for each hash server Pj ∈ P of
a degree 2k polynomial p0(y) ∈ Zp[y] such that p0(0) = 0.

4. Now gr′
i and hm′

i are both known to the servers, so the hash digest hi =
Hr(m′

i, r
′
i) = Hr(gr′

ihm′
i) can be computed. The reception server computes

hi for i = 1, . . . , 2m.

5. The reception server constructs the Merkle tree whose leaves are above hash
digests and computes tree root (round token). Then the TSA publishes the
round token, the hashing key (g, h) of the chameleon hash function Hr.

6. Generate a sequence of authentication paths authi, one for each leaf. These
paths are stored by the reception server.

To compute parent’s node value in constructing the Merkle tree from hash
digests hi, we use a cryptographic hash function H (e.g. SHA-1).

Timestamping. The Stamping Protocol used to generate a timestamp works
as follows:

1. Alice, the client ith of the round sends her identity and the hash value of the
document Di she wants to have timestamped: she sends IDA,mi (= H(Di)).

2. The reception server adds the current time t to mi, computes m = H(mi‖t)
and then sends t, mi,m to all of the servers.

3. Each hash server Pj ∈ P checks the correct time t (within reasonable limits
of precision) and checks whether m = H(mi‖t). If so, Pj computes c1j =
r′ij−xjm and c2j = xjm

′
ij +zij which is Pj ’s share of the trapdoor collision.

The role of the share zij in c2j is to allow us make the polynomial random.
Then Pj sends c1j , c2j to the reception server and to all of the other server
in P . After receiving 2k + 1 shares2 from a subset P ′ of hash servers P, the
reception server:

2 Our protocol requires a multiplication operation of two secrets x and m, so each
share will be a degree 2k polynomial. For this reason, we need 2k+1 servers for each
calculation
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4. Defines fj(y) =
∏

Pl∈P′\Pj

l−y
l−j , as in the definition of Lagrange interpolation.

The trapdoor collision is computed as follows:

ri =
∑

Pj∈P′

(c1j + c2j)fj(0)

=
∑

Pj∈P′

(r′ij − xjm + xjm
′
ij + zij)fj(0)

= r′i + xm′
i − xm.

5. Each hash server Pj ∈ P ′ discards its share m′
ij , r

′
ij , zij .

6. The TSA then returns the timestamp certificate Ci = (i, IDA,mi, ri, t, authi, tr)
to Alice, where i is the certificate serial number, and t the current date and
time, tr is the date and time for the round and authi is the authentication
path of the message mi on the Merkle tree (for the purpose of reconstructing
this timestamp). This is the timestamp for Alice’s document Di.

7. Alice receives the certificate and checks that it contains the hash of the doc-
ument she asked a timestamp for and the correct time (within reasonable
limits of precision).

Verification. A verifier who questions the validity of the timestamp Ci for
the document Di will:

1. Check that the hash value mi = H(Di) corresponds to the document Di.
2. Compute the value of the leaf i: hi = Hr(H(mi‖t), ri) check that it is part

of the data that reconstructs the timestamp for the round.

Furthermore, the scheme is robust against dishonest hash servers. As pointed
out in [12], we can verify values c1j , c2j for the purpose of detecting incorrect
shares using zero-knowledge proofs for verification. In this section, we briefly
recall the proof of Crutchfield et al. in [12].

1. Verifying c1j . Because gr′
ij and gxj are known values from the DKG protocol,

we can compute for each hash server Pi ∈ P ′, gr′
ij · (gxj )−m = gr′

ij−xjm and
confirm that gc1j = gr′

ij−xjm as desired.
2. Verifying c1j . We can apply Chaum and Pedersen’s zero knowledge proofs

(ZKP) for equality of discrete logarithms [11]. Let d = gxj , e = gm′
ij and

f = gc1j−zij . Each hash server Pj uniformly chooses r ∈ Zp at random and
computes H(g, d, e, f, gr, er) = c, where H is a random oracle and c is the
challenge. Pj computes v = xjc + r and broadcasts the pair (c, v). Finally,
all servers compute and confirm that H(g, d, e, f, gvd−c, evf−c) = c.

If any of the shares is deemed incorrect, then broadcast a complaint against
Pj . If there are at least k + 1 complaints, then clearly Pi must be corrupt since
with at most k malicious players, there can be at most k false complaints.



12 Duc-Phong Le, Alban Gabillon, and Alexis Bonnecaze

5 Discussion

5.1 Main features

Our scheme is a secure robust (k, n)-threshold timestamping scheme. Unlike the
timestamping scheme in [22] and timestamping schemes based on threshold sig-
nature in [5, 23, 7], our scheme is basically based on rounds and the round tokens
are regularly published in a widely distributed media. For verifying timestamps,
clients only need the trapdoor keys g, h, that are published along with the round
token. Thus, our scheme does not face security problems related to the limited
lifetime of digital signatures (even threshold signatures). In our scheme, we re-
new the hash keys g, h and trapdoor key x after several rounds or when a number
of corrupted servers is superior to a threshold k.

Like in other round-based linking timestamping schemes, a verifier does not
need to communicate with the TSA. Only the knowledge of the published round
token is needed to verify a timestamping certificate.

In our scheme, a timestamping certificate is returned immediately to the
client after her or his request. Thus, unlike in other Merkle tree-based schemes,
our scheme provides the clients with absolute timestamps, i.e. each document is
timestamped with its own date and time regardless of the round period. This
allows us to know exactly when the document was timestamped and to compare
timestamps generated by several TSAs that use the same or a different scheme.
In addition, our scheme allows verifiers to verify timestamps before the end of the
round. The client who keeps the timestamping certificate of her or his document
m cannot change the time t in the timestamping certificate unless she or he finds
a collision of the hash digest m‖t.

In our scheme, the number of requests in one round is pre-determined as an
exponent m of 2 before the round begins. Thus, m should be elaborately chosen.
If we choose n large, then the duration of a round can be too long. On the other
hand, if m is small, the duration of a round can be too short. Besides, a round
can combine between a number of requests 2m and a period of time. The TSA
chooses m large enough. After a period of time (e.g. a week) the TSA discards
the rest of pre-generated certificates and terminates the round.

From the point-of-view of efficiency, in our scheme the costs of our key gen-
eration and of our construction of Merkle tree are dominated by the cost of the
DKG protocol [13]. Our timestamping phase only requires one round of com-
munication between servers. Finally, our verification phase is efficient, it can be
executed in an off-line manner by a verifier, i.e. there needs no interaction with
the timestamping service.

5.2 Security Analysis

The security of our scheme reduces directly to the security of chameleon hash
functions, the security of the Merkle tree (that depends on the property “collision-
resistant” of hash functions) and the security of the threshold scheme. Before
analyzing the security of our scheme, we consider the following theorem:
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Theorem 1 (Collision resistance). A computationally bound adversary can-
not construct two authentication paths authi and auth′i verifiable against the
same commitment R if the hash functions used H and Hr are collision-resistant.

Proof. Suppose that an adversary can, in fact, construct an efficient proof col-
lision with proofs authi and auth′i against common commitment R at the same
position i. That is, the adversary may find either a trapdoor collision of the
chameleon hash function Hr without knowledge of the trapdoor key or a colli-
sion of the hash function H for the authentication path of leaf i on the Merkle
tree. Both of them are impossible if the chameleon hash function Hr and the
hash function H used for constructing the Merkle tree are collision resistant.

Correctness of the Scheme It is quite easy to see that this property is
achieved. From theorem 1, we see that the verification procedure holds if and
only if the timestamping certificate is true.

Availability Our scheme is high available. For timestamping, our scheme tol-
erates the participation of at most k < n

3 corrupted servers and requires 2k + 1
servers to construct a timestamping certificate3. When the number of corrupted
servers reaches k, our scheme allows to change the pair of keys without influenc-
ing the correctness of previous timestamping certificates. One can always verify
the correctness of a timestamping certificate even if the timestamping service is
not available.

Back and Forward Dating Attacks The following security proof of our
timestamping scheme against back-dating and forward-dating attacks follows
directly from the security of the theorem 1. It is demonstrated in the following
theorem:

Theorem 2. The proposed timestamping scheme is secure against back-dating
and forward-dating if the theorem 1 holds.

Back-dating Consider the following situation, Alice, an inventor, needs to times-
tamp her patent d at time t. After some time, the invention is disclosed to the
public. Bob, an adversary tries to steal the right to Alice’s invention. He slightly
modifies Alice’s invention (at least the author’s name should be replaced), and
tries to back-date it relative to Alice’s invention. Bob is successful if he can
construct a timestamp of the modified invention d′ such that it can be verified
at time t′ (t′ < t). Bob can then use his timestamp to claim his rights on the
invention.

Assume that an adversary (who can collude with a subset of servers or not)
tries to back-date a document (invention) using a published round token and/or

3 We require 2k + 1 servers for one calculation and tolerate k corrupted servers, thus
k should be inferior n/3
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some valid timestamps he received at time t′ in the past. We distinguish the case
where Alice discloses her invention when the round related to the timestamped
invention has not yet terminated from the case where the round is over. In
the second case, like in other round-based timestamping schemes, the adversary
cannot back-date the invention unless he finds a collision for the authentication
path related to the invention. In the first case, to back-date the invention, the
adversary should collude with at least 2k + 1 servers. This is impossible since
the system only works with at most k malicious servers.

Forward-dating Consider a client who has sign-timestamped the hash of his
will which initially favours the adversary. After some time the will is updated,
writing the adversary out and then is sign-timestamped again. Assuming that
the adversary has access to the hash of the original will, he can once again
re-register the hash of the original will. The TSA timestamps the hash of the
“first” will and then sends to the adversary a token which can be used to prove
authenticity of the “first” will.

As we presented in the section 3.3, these attacks can be prevented by using
the client’s identity (see a more details discussion in [18]).

6 Conclusion

Our new round-based timestamping scheme delivers certificates instantaneously.
This means that clients don’t have to wait until the end of the round. The
benefit is particularly notable when the length of time of the round is long.
Another interesting point is that each certificate provides a provable absolute
time. Until now, schemes based on authenticated data structure like Merkle
trees did not have this capability. In order to achieve these properties, we used
a chameleon hash function and made the scheme distributed. The chameleon
hash function allows us to provide an absolute time while the topology of the
scheme is important to obtain the desired security. This scheme can be easily
implemented since the cryptographic bricks are already well known and partially
implemented.
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